Suppr超能文献

内皮细胞转胞吞机制涉及超分子蛋白质 - 脂质复合物。

Endothelial transcytotic machinery involves supramolecular protein-lipid complexes.

作者信息

Predescu S A, Predescu D N, Palade G E

机构信息

Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla 92093, USA.

出版信息

Mol Biol Cell. 2001 Apr;12(4):1019-33. doi: 10.1091/mbc.12.4.1019.

Abstract

We have demonstrated that the plasmalemmal vesicles (caveolae) of the continuous microvascular endothelium function as transcytotic vesicular carriers for protein molecules > 20 A and that transcytosis is an N-ethylmaleimide-sensitive factor (NSF)-dependent, N-ethylmaleimide-sensitive process. We have further investigated NSF interactions with endothelial proteins to find out 1) whether a complete set of fusion and targeting proteins is present in the endothelium; 2) whether they are organized in multimolecular complexes as in neurons; and 3) whether the endothelial multimolecular complexes differ from their neuronal counterparts, because of their specialized role in transcytosis. To generate the complexes, we have used myc-NSF, cultured pulmonary endothelial cells, and rat lung cytosol and membrane preparations; to detect them we have applied coimmunoprecipitation with myc antibodies; and to characterize them we have used velocity sedimentation and cross-linking procedures. We have found that both cytosolic and membrane fractions contain complexes that comprise beside soluble NSF attachment proteins and SNAREs (soluble NSF attachment protein receptor), rab 5, dynamin, caveolin, and lipids. By immunogold labeling and negative staining we have detected in these complexes, myc-NSF, syntaxin, dynamin, caveolin, and endogenous NSF. Similar complexes are formed by endogenous NSF. The results indicate that complexes with a distinct protein-lipid composition exist and suggest that they participate in targeting, fusion, and fission of caveolae with the endothelial plasmalemma.

摘要

我们已经证明,连续性微血管内皮的质膜小泡(小窝)作为蛋白质分子>20 A的转胞吞小泡载体发挥作用,并且转胞吞作用是一种依赖N - 乙基马来酰亚胺敏感因子(NSF)的、对N - 乙基马来酰亚胺敏感的过程。我们进一步研究了NSF与内皮细胞蛋白的相互作用,以弄清楚:1)内皮细胞中是否存在完整的融合和靶向蛋白;2)它们是否像在神经元中一样以多分子复合物的形式组织;3)由于内皮多分子复合物在转胞吞作用中的特殊作用,它们是否与神经元中的对应物不同。为了生成复合物,我们使用了myc - NSF、培养的肺内皮细胞以及大鼠肺胞质溶胶和膜制剂;为了检测它们,我们应用了用myc抗体进行的共免疫沉淀;为了对它们进行表征,我们使用了速度沉降和交联程序。我们发现,胞质和膜部分都含有复合物,这些复合物除了包含可溶性NSF附着蛋白和SNAREs(可溶性NSF附着蛋白受体)外,还包含rab 5、发动蛋白、小窝蛋白和脂质。通过免疫金标记和负染色,我们在这些复合物中检测到了myc - NSF、 syntaxin、发动蛋白、小窝蛋白和内源性NSF。内源性NSF也形成了类似的复合物。结果表明存在具有独特蛋白质 - 脂质组成的复合物,并提示它们参与小窝与内皮细胞质膜的靶向、融合和裂变。

相似文献

1
Endothelial transcytotic machinery involves supramolecular protein-lipid complexes.
Mol Biol Cell. 2001 Apr;12(4):1019-33. doi: 10.1091/mbc.12.4.1019.
10
SNAREpins are functionally resistant to disruption by NSF and alphaSNAP.
J Cell Biol. 2000 May 29;149(5):1063-72. doi: 10.1083/jcb.149.5.1063.

引用本文的文献

1
Strategies for Delivering Nanoparticles across Tumor Blood Vessels.
Adv Funct Mater. 2021 Feb 17;31(8). doi: 10.1002/adfm.202007363. Epub 2020 Nov 12.
2
Editorial: Molecular mechanisms of lung endothelial permeability.
Front Physiol. 2022 Jul 22;13:976873. doi: 10.3389/fphys.2022.976873. eCollection 2022.
3
Endothelial Transcytosis in Acute Lung Injury: Emerging Mechanisms and Therapeutic Approaches.
Front Physiol. 2022 Mar 31;13:828093. doi: 10.3389/fphys.2022.828093. eCollection 2022.
5
Changes in blood-spinal cord barrier permeability and neuroimmune interactions in the underlying mechanisms of chronic pain.
Pain Rep. 2021 Mar 9;6(1):e879. doi: 10.1097/PR9.0000000000000879. eCollection 2021.
6
Structural and Functional Remodeling of the Brain Vasculature Following Stroke.
Front Physiol. 2020 Aug 7;11:948. doi: 10.3389/fphys.2020.00948. eCollection 2020.
7
Lung Endothelial Transcytosis.
Compr Physiol. 2020 Mar 12;10(2):491-508. doi: 10.1002/cphy.c190012.
8
Neutrophil-endothelial interactions of murine cells is not a good predictor of their interactions in human cells.
FASEB J. 2020 Feb;34(2):2691-2702. doi: 10.1096/fj.201900048R. Epub 2019 Dec 23.
9
Rho and Reactive Oxygen Species at Crossroads of Endothelial Permeability and Inflammation.
Antioxid Redox Signal. 2019 Nov 1;31(13):1009-1022. doi: 10.1089/ars.2019.7798. Epub 2019 Jun 28.
10
Protein kinase C-delta inhibition protects blood-brain barrier from sepsis-induced vascular damage.
J Neuroinflammation. 2018 Nov 6;15(1):309. doi: 10.1186/s12974-018-1342-y.

本文引用的文献

2
Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells.
Nat Cell Biol. 1999 Oct;1(6):369-75. doi: 10.1038/14067.
3
VAMP-1 has a highly variable C-terminus generated by alternative splicing.
Biochem Biophys Res Commun. 1999 Nov 2;264(3):777-80. doi: 10.1006/bbrc.1999.1588.
4
Isolation, cloning, and localization of rat PV-1, a novel endothelial caveolar protein.
J Cell Biol. 1999 Jun 14;145(6):1189-98. doi: 10.1083/jcb.145.6.1189.
7
Transcytosis of alpha1-acidic glycoprotein in the continuous microvascular endothelium.
Proc Natl Acad Sci U S A. 1998 May 26;95(11):6175-80. doi: 10.1073/pnas.95.11.6175.
8
Syntaxin-16, a putative Golgi t-SNARE.
Eur J Cell Biol. 1998 Mar;75(3):223-31. doi: 10.1016/S0171-9335(98)80116-7.
9
Syntaxin 11: a member of the syntaxin family without a carboxyl terminal transmembrane domain.
Biochem Biophys Res Commun. 1998 Apr 17;245(2):627-32. doi: 10.1006/bbrc.1998.8490.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验