Ciechanover A, Gonen H, Bercovich B, Cohen S, Fajerman I, Israël A, Mercurio F, Kahana C, Schwartz A L, Iwai K, Orian A
Department of Biochemistry and the Rappaport Institute for Research in the Medical Sciences, The Bruce Rappaport Faculty of Medicine, Haifa, Israel.
Biochimie. 2001 Mar-Apr;83(3-4):341-9. doi: 10.1016/s0300-9084(01)01239-1.
In most cases, target proteins of the ubiquitin system are completely degraded. In several exceptions, such as the first step in the activation of the transcriptional regulator NF-kappaB, the substrate, the precursor protein p105, is processed in a limited manner to yield the active subunit p50. p50 is derived from the N-terminal domain of p105, whereas the C-terminal domain is degraded. The mechanisms involved in this unique process have remained elusive. We have shown that a Gly-rich region (GRR) at the C-terminal domain of p50 is one important processing signal and that it interferes with processing of the ubiquitinated precursor by the 26S proteasome. Also, amino acid residues 441-454 are important for processing under non-stimulated conditions. Lys 441 and 442 serve as ubiquitination targets, whereas residues 446-454 may serve as a ligase recognition motif. Following IkappaB kinase (IKK)-mediated phosphorylation, the C-terminal domain of p105, residues 918-934, recruits the SCF(beta-TrCP) ubiquitin ligase, and ubiquitination by this complex leads to accelerated processing. The two sites appear to be recognized under different physiological conditions by two different ligases, targeting two distinct recognition motifs. We have shown that ubiquitin conjugation and processing of a series of precursors of p105 that lack the C-terminal IKK phosphorylation/TrCP binding domain, is progressively inhibited with increasing number of ankyrin repeats. Inhibition is due to docking of active NF-kappaB subunits to the ankyrin repeat domain in the C-terminal half of p105 (IkappaBgamma). Inhibition is alleviated by phosphorylation of the C-terminal domain that leads to ubiquitin-mediated degradation of the ankyrin repeat domain and release of the anchored subunits. We propose a model that may explain the requirement for two sites: a) a basal site that may be involved in co-translational processing prior to the synthesis of the ankyrin repeat domain; and b) a signal-induced site that is involved in processing/degradation of the complete molecule following cell activation, with rapid release of stored, transcriptionally active subunits.
在大多数情况下,泛素系统的靶蛋白会被完全降解。但也有一些例外情况,比如转录调节因子NF-κB激活过程的第一步,底物即前体蛋白p105会以有限的方式进行加工,产生活性亚基p50。p50源自p105的N端结构域,而C端结构域则被降解。这一独特过程所涉及的机制一直尚不明确。我们已经表明,p50 C端结构域的富含甘氨酸区域(GRR)是一个重要的加工信号,它会干扰26S蛋白酶体对泛素化前体的加工。此外,氨基酸残基441 - 454在非刺激条件下对加工过程也很重要。赖氨酸441和442作为泛素化靶点,而残基446 - 454可能作为连接酶识别基序。在IκB激酶(IKK)介导的磷酸化之后,p105的C端结构域(残基918 - 934)招募SCF(β-TrCP)泛素连接酶,该复合物介导的泛素化会导致加工加速。这两个位点似乎在不同的生理条件下被两种不同的连接酶识别,靶向两个不同的识别基序。我们已经表明,一系列缺乏C端IKK磷酸化/TrCP结合结构域的p105前体的泛素化连接和加工,会随着锚蛋白重复序列数量的增加而逐渐受到抑制。抑制是由于活性NF-κB亚基与p105 C端后半部分的锚蛋白重复结构域(IκBγ)对接所致。C端结构域的磷酸化会导致锚蛋白重复结构域的泛素介导降解以及锚定亚基的释放,从而缓解抑制作用。我们提出了一个模型,该模型或许可以解释对两个位点的需求:a)一个基础位点,可能参与锚蛋白重复结构域合成之前的共翻译加工;b)一个信号诱导位点,在细胞激活后参与完整分子的加工/降解,使储存的转录活性亚基快速释放。