Suppr超能文献

心室输入阻抗对生物人工主动脉根部体外流体动力学性能的影响。

The influence of ventricular input impedance on the hydrodynamic performance of bioprosthetic aortic roots in vitro.

作者信息

Jennings L M, Butterfield M, Walker P G, Watterson K G, Fisher J

机构信息

School of Mechanical Engineering, University of Leeds, UK.

出版信息

J Heart Valve Dis. 2001 Mar;10(2):269-75.

Abstract

BACKGROUND AND AIM OF THE STUDY

Hydrodynamic function testing using pulsatile flow simulators provides a valuable means of comparative assessment of heart valves in vitro. The majority of pulsatile flow simulators consist of modular rigid chambers and a positive displacement pump with an infinite input impedance, in which the inertia of the test fluid results in pressure oscillations when the valves under test are opening and closing. For mechanical and stented bioprosthetic valves these pressure oscillations decay quickly. However, due to the highly compliant nature of tissue roots, the resulting pressure and flow oscillations are extreme and extend throughout systole. With increasing interest in the use of free-sewn roots and valves it is most desirable to improve this hydrodynamic model. The aim of this study was to investigate the influence in changes in ventricular input impedance on the hydrodynamic characteristics of free-sewn aortic roots and stented valves.

METHODS

The Leeds pulsatile flow simulator was modified to incorporate additional compliance chambers in the form of a viscoelastic impedance adaptor (VIA) at the pump/ventricular interface. Six 23 mm bioprosthetic aortic roots fixed with 0.5% buffered glutaraldehyde at zero pressure, and a size 23 mm stented porcine aortic bioprosthesis were tested in this modified simulator, at the conditions of maximum and minimum input compliance.

RESULTS

The pressure and flow waveforms for the fixed aortic roots showed considerable differences at the conditions of maximum and minimum input compliance. Indeed, the extreme pressure oscillations observed at minimum compliance (infinite input impedance) were not present at maximum compliance, and the forward flow waveform was much smoother. In contrast, for the stented valve, the differences in the pressure and flow waveforms between maximum and minimum input compliance were minimal, but this was expected due to the lack of compliance in the stented valve itself. In addition, the flow and pressure waveforms at maximum compliance in the VIA were comparable for the fixed aortic roots and the stented bioprosthesis, thus allowing direct comparison of the characteristics of these two different devices. Using test conditions of maximum input compliance, effective orifice area for the roots was 1.69 cm2 compared with 1.47 cm2 for the stented valve.

CONCLUSION

An appropriate physiological model for the hydrodynamic testing of compliant tissue roots has been established.

摘要

研究背景与目的

使用脉动流模拟器进行流体动力学功能测试为体外比较评估心脏瓣膜提供了一种有价值的手段。大多数脉动流模拟器由模块化刚性腔室和具有无限输入阻抗的容积泵组成,在这种情况下,当被测瓣膜打开和关闭时,测试流体的惯性会导致压力振荡。对于机械瓣膜和带支架生物瓣膜,这些压力振荡会迅速衰减。然而,由于组织根部具有高度顺应性,所产生的压力和流量振荡非常剧烈,并贯穿整个收缩期。随着对使用游离缝合根部和瓣膜的兴趣日益增加,改进这种流体动力学模型变得非常必要。本研究的目的是探讨心室输入阻抗变化对游离缝合主动脉根部和带支架瓣膜流体动力学特性的影响。

方法

对利兹脉动流模拟器进行了改进,在泵/心室界面处加入了以粘弹性阻抗适配器(VIA)形式的额外顺应腔室。在该改进模拟器中,对六个在零压力下用0.5%缓冲戊二醛固定的23毫米生物主动脉根部,以及一个23毫米带支架猪主动脉生物瓣膜,在最大和最小输入顺应性条件下进行了测试。

结果

固定主动脉根部的压力和流量波形在最大和最小输入顺应性条件下显示出显著差异。实际上,在最小顺应性(无限输入阻抗)时观察到的极端压力振荡在最大顺应性时并不存在,并且正向流量波形要平滑得多。相比之下,对于带支架瓣膜,最大和最小输入顺应性之间的压力和流量波形差异最小,但由于带支架瓣膜本身缺乏顺应性,这是可以预料的。此外,VIA中最大顺应性时的流量和压力波形对于固定主动脉根部和带支架生物瓣膜是可比的,从而可以直接比较这两种不同装置的特性。在最大输入顺应性的测试条件下,根部的有效瓣口面积为1.69平方厘米,而带支架瓣膜为1.47平方厘米。

结论

已建立了用于顺应性组织根部流体动力学测试的合适生理模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验