Grigorian K P, Azatyan K V, Kazaryan S H, Ayrapetyan S N
Institute of Fine Organic Chemistry, National Academy of Sciences, Yerevan, Armenia.
Comp Biochem Physiol C Toxicol Pharmacol. 2001 Apr;128(4):511-20. doi: 10.1016/s1532-0456(01)00168-5.
Using internally dialyzed neurons of Helix pomatia as a model, the effect of structural analogs of acetylcholine (ACh) were investigated for their cholinomimetic properties on A- and B-types of ACh-responses. Specifically we analyzed choline esters of N-para- and ortho-alkoxybenzoyl-beta-alanines, (CH(3)O-, C(2)H(5)O-, C(3)H(7)O-, iso-C(3)H(7)O-, C(4)H(9)O-, iso-C(4)H(9)O-, C(5)H(11)O-, iso-C(5)H(11)O-), (in all, 16 combinations). The compounds evoked differing sensitivities of response to factors de-activating the Na-K-pump (ouabain and K-free solution). Most compounds resembled ACh: ionic currents caused by these compounds were inhibited by Na-K pump blockers in the case of A-type responses - B-type responses were insensitive to these factors. Ionic currents induced by choline esters of p-, o-propoxy- and iso-propoxybenzoyl-beta-alanines were insensitive to ouabain and K-free solution in the case of A- and B-type responses. Ionic currents induced by the choline ester of p-butoxybenzoyl-beta-alanine were inhibited by ouabain and K-free solution on both types of neuron. The results allow us to classify choline esters of p-, o-propoxy- and iso-propoxybenzoyl-beta-alanines as N-cholinomimetics, while the choline ester of p-butoxybenzoyl-beta-alanine can be considered as M-cholinomimetic. We conclude that both M- and N-type ACh receptors exist on the membrane of the same neurons.