Lindell M K, Whitney D J
Hazard Reduction and Recovery Center, Texas A&M University, College Station 77843-3137, USA.
J Appl Psychol. 2001 Feb;86(1):114-21. doi: 10.1037/0021-9010.86.1.114.
Cross-sectional studies of attitude-behavior relationships are vulnerable to the inflation of correlations by common method variance (CMV). Here, a model is presented that allows partial correlation analysis to adjust the observed correlations for CMV contamination and determine if conclusions about the statistical and practical significance of a predictor have been influenced by the presence of CMV. This method also suggests procedures for designing questionnaires to increase the precision of this adjustment.
态度-行为关系的横断面研究容易受到共同方法方差(CMV)导致的相关性膨胀的影响。在此,提出了一个模型,该模型允许进行偏相关分析,以针对CMV污染调整观察到的相关性,并确定关于预测变量的统计和实际意义的结论是否受到CMV存在的影响。该方法还提出了设计问卷的程序,以提高这种调整的精度。