Acedo L, Yuste S B
Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jan;63(1 Pt 1):011105. doi: 10.1103/PhysRevE.63.011105. Epub 2000 Dec 21.
We address the problem of evaluating the number S(N)(t) of distinct sites visited up to time t by N noninteracting random walkers all starting from the same origin in fractal media. For a wide class of fractals (of which the percolation cluster at criticality and the Sierpinski gasket are typical examples) we propose, for large N and after the short-time compact regime, an asymptotic series for S(N)(t) analogous to that found for Euclidean media: S(N)(t) approximately S(N)(t)(1-Delta). Here S(N)(t) is the number of sites (volume) inside a hypersphere of radius L[ln(N)/c]1/v where L is the root-mean-square chemical displacement of a single random walker, and v and c determine how fast 1-Gamma(t)(l) (the probability that a given site at chemical distance l from the origin is visited by a single random walker by time t) decays for large values of l/L: 1-Gamma(t)(l) approximately exp[-c(l/L)(v)]. For the fractals considered in this paper, v=d(l)w/((d(l)w)-1), d(l)w being the chemical-diffusion exponent. The corrective term Delta is expressed as a series in ln(-n)(N)ln(m) ln(N) (with n> or =1 and 0< or =m< or =n), which is given explicitly up to n=2. This corrective term contributes substantially to the final value of S(N)(t) even for relatively large values of N.
我们研究了一个问题,即评估在分形介质中从同一原点出发的(N)个非相互作用随机漫步者在时间(t)之前访问的不同位点的数量(S^{(N)}(t))。对于一大类分形(其中临界渗流簇和谢尔宾斯基垫片是典型例子),我们提出,对于大(N)且在短时间紧致 regime 之后,(S^{(N)}(t))的渐近级数类似于在欧几里得介质中发现的:(S^{(N)}(t)\approx S^{(N)}(t)(1 - \Delta))。这里(S^{(N)}(t))是半径为(L[\ln(N)/c]^{1/v})的超球体内的位点(体积)数量,其中(L)是单个随机漫步者的均方根化学位移,(v)和(c)确定对于大的(l/L)值,(1 - \Gamma(t)(l))(从原点化学距离为(l)的给定位点在时间(t)之前被单个随机漫步者访问的概率)衰减的速度:(1 - \Gamma(t)(l)\approx\exp[-c(l/L)^{v}])。对于本文中考虑的分形,(v = d_{w}(l)/((d_{w}(l)-1))),(d_{w}(l))是化学扩散指数。校正项(\Delta)表示为(\ln^{(-n)}(N)\ln^{m}\ln(N))((n\geq1)且(0\leq m\leq n))的级数,明确给出到(n = 2)。即使对于相对大的(N)值,这个校正项对(S^{(N)}(t))的最终值也有很大贡献。