Suppr超能文献

河网的几何学。III. 组成连通性的特征描述。

Geometry of river networks. III. Characterization of component connectivity.

作者信息

Dodds P S, Rothman D H

机构信息

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jan;63(1 Pt 2):016117. doi: 10.1103/PhysRevE.63.016117. Epub 2000 Dec 27.

Abstract

Essential to understanding the overall structure of river networks is a knowledge of their detailed architecture. Here we explore the presence of randomness in river network structure and the details of its consequences. We first show that an averaged view of network architecture is provided by a proposed self-similarity statement about the scaling of drainage density, a local measure of stream concentration. This scaling of drainage density is shown to imply Tokunaga's law, a description of the scaling of side branch abundance along a given stream, as well as a scaling law for stream lengths. We then consider fluctuations in drainage density and consequently the numbers of side branches. Data are analyzed for the Mississippi River basin and a model of random directed networks. Numbers of side streams are found to follow exponential distributions, as are intertributary distances along streams. Finally, we derive a joint variation of side stream abundance with stream length, affording a full description of fluctuations in network structure. Fluctuations in side stream numbers are shown to be a direct result of fluctuations in stream lengths. This is the last paper in a series of three on the geometry of river networks.

摘要

了解河网的整体结构,关键在于掌握其详细架构。在此,我们探究河网结构中随机性的存在及其影响细节。我们首先表明,通过关于排水密度(一种衡量支流集中程度的局部量)缩放的自相似性表述,可以提供网络架构的平均视图。排水密度的这种缩放被证明意味着德永定律,即对沿给定河流侧支丰度缩放的一种描述,以及河流长度的缩放定律。然后,我们考虑排水密度的波动以及随之而来的侧支数量波动。对密西西比河流域的数据以及随机有向网络模型进行了分析。发现支流数量遵循指数分布,沿河流的支流间距离也是如此。最后,我们推导了侧支丰度与河流长度的联合变化,从而全面描述了网络结构的波动情况。结果表明,支流数量的波动是河流长度波动的直接结果。这是关于河网几何结构的三篇系列论文中的最后一篇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验