Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K
Institute of Medicine, Research Center Jülich, Germany.
Neuroimage. 2001 Apr;13(4):684-701. doi: 10.1006/nimg.2000.0715.
The transverse temporal gyrus of Heschl contains the human auditory cortex. Several schematic maps of the cytoarchitectonic correlate of this functional entity are available, but they present partly conflicting data (number and position of borders of the primary auditory areas) and they do not enable reliable comparisons with functional imaging data in a common spatial reference system. In order to provide a 3-D data set of the precise position and extent of the human primary auditory cortex, its putative subdivisions, and its topographical intersubject variability, we performed a quantitative cytoarchitectonic analysis of 10 brains using a recently established technique for observer-independent definition of areal borders. Three areas, Te1.1, Te1.0, and Te1.2, with a well-developed layer IV, which represent the primary auditory cortex (Brodmann area 41), can be identified along the mediolateral axis of the Heschl gyrus. The cell density was significantly higher in Te1.1 compared to Te1.2 in the left but not in the right hemisphere. The cytoarchitectonically defined areal borders of the primary auditory cortex do not consistently match macroanatomic landmarks like gyral and sulcal borders. The three primary auditory areas of each postmortem brain were mapped to a spatial reference system which is based on a brain registered by in vivo magnetic resonance imaging. The integration of a sample of postmortem brains in a spatial reference system allows one to estimate the spatial variability of each cytoarchitectonically defined region with respect to this reference system. In future, the transfer of in vivo structural and functional data into the same spatial reference system will enable accurate comparisons of cytoarchitectonic maps of the primary auditory cortex with activation centers as established with functional imaging procedures.
颞横回的赫氏回包含人类听觉皮层。目前已有该功能实体细胞构筑相关的几张示意图,但它们呈现的数据部分相互矛盾(初级听觉区域边界的数量和位置),并且无法在共同的空间参考系统中与功能成像数据进行可靠比较。为了提供人类初级听觉皮层精确位置和范围、其假定的亚区以及个体间地形变异性的三维数据集,我们使用一种最近建立的用于独立于观察者定义区域边界的技术,对10个大脑进行了定量细胞构筑分析。沿着赫氏回的内外侧轴,可以识别出三个区域,即Te1.1、Te1.0和Te1.2,它们具有发育良好的IV层,代表初级听觉皮层(布罗德曼第41区)。在左半球,Te1.1的细胞密度显著高于Te1.2,但在右半球并非如此。细胞构筑学定义的初级听觉皮层区域边界与诸如脑回和脑沟边界等大体解剖标志并不总是一致。每个死后大脑的三个初级听觉区域被映射到一个基于通过活体磁共振成像注册的大脑的空间参考系统。将死后大脑样本整合到空间参考系统中,可以估计每个细胞构筑学定义区域相对于该参考系统的空间变异性。未来,将活体结构和功能数据转换到相同的空间参考系统中,将能够准确比较初级听觉皮层的细胞构筑图与通过功能成像程序确定的激活中心。