Suppr超能文献

湍流理论中的平均场近似和一个小参数。

Mean-field approximation and a small parameter in turbulence theory.

作者信息

Yakhot V

机构信息

School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 2):026307. doi: 10.1103/PhysRevE.63.026307. Epub 2001 Jan 26.

Abstract

Numerical and physical experiments on two-dimensional (2D) turbulence show that the differences of transverse components of velocity field are well described by Gaussian statistics and Kolmogorov scaling exponents. In this case the dissipation fluctuations are irrelevant in the limit of small viscosity. In general, one can assume the existence of a critical space dimensionality d=d(c), at which the energy flux and all odd-order moments of velocity difference change sign and the dissipation fluctuations become dynamically unimportant. At d<d(c) the flow can be described by the "mean-field theory," leading to the observed Gaussian statistics and Kolmogorov scaling of transverse velocity differences. It is shown that in the vicinity of d=d(c) the ratio of the relaxation and translation characteristic times decreases to zero, thus giving rise to a small parameter of the theory. The expressions for pressure and dissipation contributions to the exact equation for the generating function of transverse velocity differences are derived in the vicinity of d=d(c). The resulting equation describes experimental data on two-dimensional turbulence and demonstrates the onset of intermittency as d-d(c)>0 and r/L-->0 in three-dimensional flows in close agreement with experimental data. In addition, some exact relations between correlation functions of velocity differences are derived. It is also predicted that the single-point probability density function of transverse velocity components in developing as well as in the large-scale stabilized two-dimensional turbulence is a Gaussian.

摘要

二维(2D)湍流的数值和物理实验表明,速度场横向分量的差异可以用高斯统计和柯尔莫哥洛夫标度指数很好地描述。在这种情况下,在小粘性极限下,耗散涨落是无关紧要的。一般来说,可以假设存在一个临界空间维数d = d(c),在该维数下,能量通量和速度差的所有奇数阶矩会改变符号,并且耗散涨落变得在动力学上不重要。在d < d(c)时,流动可以用“平均场理论”来描述,从而导致观测到的高斯统计和横向速度差的柯尔莫哥洛夫标度。结果表明,在d = d(c)附近,弛豫和迁移特征时间的比值减小到零,从而产生了该理论的一个小参数。在d = d(c)附近,推导了压力和耗散对横向速度差生成函数精确方程的贡献表达式。所得方程描述了二维湍流的实验数据,并表明在三维流动中,当d - d(c)>0且r/L-->0时,间歇性开始出现,这与实验数据非常吻合。此外,还推导了速度差相关函数之间的一些精确关系。还预测,在发展中的以及大规模稳定的二维湍流中,横向速度分量的单点概率密度函数是高斯分布的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验