Tanabe S, Pakdaman K
Department of Systems and Human Science, School of Engineering Science, Osaka University, Toyonaka, 560-8531 Osaka, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Mar;63(3 Pt 1):031911. doi: 10.1103/PhysRevE.63.031911. Epub 2001 Feb 27.
For the study of the behavior of noisy neuronal models, Rodriguez and Tuckwell have introduced an elegant and systematic method which consists of replacing the system of stochastic differential equations with a system of deterministic equations representing the dynamics of the means, variances, and covariance of the state variables [R. Rodriguez and H.C. Tuckwell, Phys. Rev. E 54, 5585 (1996)]. In this work, we first report a modification of their method in the case of the FitzHugh-Nagumo model which enhances the accuracy of the approximation without including higher order moments. This method is then combined with a self-consistency argument in order to better characterize the behavior of the underlying stochastic processes through the computation of approximate auto- and cross-correlation functions of the state variables. Finally, we argue that the moments' equations can also reveal the existence of stochastic bifurcations, i.e., qualitative changes in the dynamics of stochastic systems.
为了研究有噪声的神经元模型的行为,罗德里格斯和塔克韦尔引入了一种优雅且系统的方法,该方法包括用一个确定性方程组来代替随机微分方程组,这个确定性方程组表示状态变量的均值、方差和协方差的动态变化[R. 罗德里格斯和H.C. 塔克韦尔,《物理评论E》54, 5585 (1996)]。在这项工作中,我们首先报告在菲茨休 - 纳古莫模型的情况下对他们方法的一种改进,这种改进在不包含高阶矩的情况下提高了近似的准确性。然后将此方法与自洽论证相结合,以便通过计算状态变量的近似自相关函数和互相关函数来更好地表征潜在随机过程的行为。最后,我们认为矩方程也可以揭示随机分岔的存在,即随机系统动态变化中的定性变化。