Ivankov N Y, Kuznetsov S P
Saratov State University, Astrakhanskaja 83, Saratov 410026, Russian Federation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Apr;63(4 Pt 2):046210. doi: 10.1103/PhysRevE.63.046210. Epub 2001 Mar 28.
At the critical point of the golden-mean quasiperiodic transition to chaos we show the presence of an infinite sequence of unstable orbits in complex domain with periods given by the Fibonacci numbers. The Floquet eigenvalues (multipliers) are found to converge fast to a universal complex constant. We explain this result on the basis of the renormalization group approach and suggest using it for accurate estimates of the location of the golden-mean critical points in parameter space for a class of nonlinear dissipative systems defined analytically. As an example, we obtain data for the golden-mean critical point in the two-dimensional dissipative invertible map of Zaslavsky. We give a set of graphical illustrations for the scaling properties and emphasize that demonstration of self-similarity on two-dimensional diagrams of Arnold tongues requires the use of a properly chosen curvilinear coordinate system. We discuss a procedure of construction of the appropriate local coordinate system in the parameter plane and present the corresponding data for the circle map and Zaslavsky map.
在黄金分割准周期向混沌转变的临界点,我们表明在复域中存在一个无限序列的不稳定轨道,其周期由斐波那契数给出。发现弗洛凯特征值(乘数)迅速收敛到一个通用复常数。我们基于重整化群方法解释了这一结果,并建议将其用于精确估计一类解析定义的非线性耗散系统在参数空间中黄金分割临界点的位置。作为一个例子,我们获得了扎斯拉夫斯基二维耗散可逆映射中黄金分割临界点的数据。我们给出了一组关于标度性质的图形说明,并强调在阿诺德舌的二维图上展示自相似性需要使用适当选择的曲线坐标系。我们讨论了在参数平面中构建适当局部坐标系的过程,并给出了圆映射和扎斯拉夫斯基映射的相应数据。