Suppr超能文献

关于洛伦兹系统中由不稳定周期轨道诱导的无穷同宿轨道。

On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system.

作者信息

Guo Siyu, Luo Albert C J

机构信息

Department of Mechanical and Mechatronics Engineering, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026-1805, USA.

出版信息

Chaos. 2021 Apr;31(4):043106. doi: 10.1063/5.0044161.

Abstract

In this paper, infinite homoclinic orbits existing in the Lorenz system are analytically presented. Such homoclinic orbits are induced by unstable periodic orbits on bifurcation trees through period-doubling cascades. Each unstable periodic orbit ends at its corresponding homoclinic orbit. Traditional computational methods cannot obtain homoclinic orbits from the corresponding unstable periodic orbits. This is because unstable periodic orbits in the Lorenz system cannot be achieved in numerical simulations. Herein, the stable and unstable periodic motions to chaos on the period-doubling cascaded bifurcation trees are determined through a discrete mapping method. The corresponding homoclinic orbits induced by the unstable periodic orbits are predicted analytically. A period-doubling bifurcation tree of period-1, period-2, and period-4 motions are generated as an example. The homoclinic orbits relative to unstable period-1, period-2, and period-4 motions are determined. Illustrations of homoclinic orbits and periodic orbits are given. This study presents how to determine infinite homoclinic orbits through unstable periodic orbits in three-dimensional or higher-dimensional nonlinear systems.

摘要

本文通过解析方法给出了洛伦兹系统中存在的无穷多同宿轨道。此类同宿轨道由倍周期分岔级联的分岔树上的不稳定周期轨道诱导产生。每个不稳定周期轨道都终止于其对应的同宿轨道。传统计算方法无法从相应的不稳定周期轨道得到同宿轨道。这是因为洛伦兹系统中的不稳定周期轨道无法在数值模拟中实现。在此,通过离散映射方法确定了倍周期分岔级联分岔树上通向混沌的稳定和不稳定周期运动。对由不稳定周期轨道诱导的相应同宿轨道进行了解析预测。以周期为1、周期为2和周期为4的运动的倍周期分岔树为例进行了生成。确定了相对于不稳定周期为1、周期为2和周期为4的运动的同宿轨道。给出了同宿轨道和周期轨道的图示。本研究展示了如何在三维或更高维非线性系统中通过不稳定周期轨道确定无穷多同宿轨道。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验