Fritsky I O, Ott R, Pritzkow H, Krämer R
Anorganische-Chemisches Institut, Universität Heidelberg, Germany.
Chemistry. 2001 Mar 16;7(6):1221-31. doi: 10.1002/1521-3765(20010316)7:6<1221::aid-chem1221>3.0.co;2-t.
A trinuclear metal complex of general formula (L-H)M3(Mf)2 represents the first allosteric low molecular weight catalyst. L is a polyaza ligand having a tetradentate and two bidentate metal binding sites, Ms is a "structural" (allosteric) metal, and Mf are functional (catalytic) metals which interact with a substrate. In mononuclear [(L-H)Ms]+ complexes [(L-H)Cu(MeOH)]ClO4 (1a). [(L-H)Cu]NO3 x 2H2O (1b), [(L-H)Ni]ClO4 x 4H2O (2), and [(L-H)Pd]ClO4 x 2H2O (3), prepared from L and M2+ salts, the metal is strongly bound by an in-plane N4-coordination (confirmed by X-ray crystal structure determination of la). Formation of trinuclear complexes [(L-H)MsCu2]5+, with two functional Cu2+ ions coordinated to the bidentate sites of L, was evidenced in solution by photometric titration and by isolation of [(L-H)Cu3][PO4][ClO4]2 x 9H2O (4). The trinuclear complexes catalyze the cleavage of RNA-analogue 2-(hydroxypropyl)-p-nitrophenyl phosphate (HPNP), an activated phosphodiester. From a kinetic analysis of the cleavage rate at various HPNP concentrations, parameters KHPNP (the equilibrium constant for binding of HPNP to [(L-H)MsCu2]5+ and kcat (first-order rate constant for cleavage of HPNP when bound to the catalyst) were derived: KM= 170 (Ms= Cu2+), 340 (Ms = Ni2+), 2,600 (Ms = Pd2+) M(-1), kcat = 17 x 10(-3) (Ms= Cu2+) 3.1 x 10(-3) (Ms=Ni2+), 0.22 x 10(-3) (Ms = Pd2+) s(-1). Obviously, the nature of the allosteric metal ion Ms strongly influences both substrate affinity and reactivity of the catalyst [(L-H)MsCu2]5+. Our interpretation of this observation is that subtle differences in the ionic radius of Ms and in its tendency to distort the N4-Ms coordination plane have a significant influence on the conformation of the catalyst (i.e., preorganization of functional Cu2+ ions) and thus on catalytic activity.
通式为(L-H)M3(Mf)2的三核金属配合物代表了首个变构低分子量催化剂。L是一种具有一个四齿和两个双齿金属结合位点的多氮杂配体,Ms是“结构”(变构)金属,Mf是与底物相互作用的功能性(催化)金属。在由L和M2+盐制备的单核[(L-H)Ms]+配合物[(L-H)Cu(MeOH)]ClO4 (1a)、[(L-H)Cu]NO3·2H2O (1b)、[(L-H)Ni]ClO4·4H2O (2)和[(L-H)Pd]ClO4·2H2O (3)中,金属通过面内N4配位被牢固结合(通过1a的X射线晶体结构测定得到证实)。通过光度滴定和[(L-H)Cu3][PO4][ClO4]2·9H2O (4)的分离,在溶液中证实了形成了具有两个与L的双齿位点配位的功能性Cu2+离子的三核配合物[(L-H)MsCu(2)]5+。三核配合物催化RNA类似物2-(羟丙基)-对硝基苯磷酸酯(HPNP,一种活化的磷酸二酯)的裂解。通过对不同HPNP浓度下裂解速率的动力学分析,得出了参数KHPNP(HPNP与[(L-H)MsCu2]5+结合的平衡常数)和kcat(HPNP与催化剂结合时裂解的一级速率常数):KM = 对于Ms = Cu2+为170、对于Ms = Ni2+为340、对于Ms = Pd2+为2600 M(-1),kcat = 对于Ms = Cu2+为17×10(-3)、对于Ms = Ni2+为3.1×10(-3)、对于Ms = Pd2+为0.22×10(-3) s(-1)。显然,变构金属离子Ms的性质强烈影响催化剂[(L-H)MsCu2]5+的底物亲和力和反应活性。我们对这一观察结果的解释是,Ms离子半径及其扭曲N4-Ms配位平面倾向的细微差异对催化剂的构象(即功能性Cu2+离子的预组织)有重大影响,从而对催化活性产生影响。