Suppr超能文献

在基于边界元法的近场声全息中使用非奇异边界积分公式来减少由于近场测量引起的误差。

Use of nonsingular boundary integral formulation for reducing errors due to near-field measurements in the boundary element method based near-field acoustic holography.

作者信息

Kang S C, Ih J G

机构信息

Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Taejon.

出版信息

J Acoust Soc Am. 2001 Apr;109(4):1320-8. doi: 10.1121/1.1350401.

Abstract

In the conformal near-field acoustic holography (NAH) using the boundary element method (BEM), the transfer matrix relating the vibro-acoustic properties of source and field depends solely on the geometrical condition of the problem. This kind of NAH is known to be very powerful in dealing with the sources having irregular shaped boundaries. When the vibro-acoustic source field is reconstructed by using this conformal NAH, one tends to position the sensors as close as possible to the source surface in order to get rich information on the nonpropagating wave components. The conventional acoustic BEM based on the Kirchhoff-Helmholtz integral equation has the singularity problem in the close near field of the source surface. This problem stems from the singular kernel of the Green function of the boundary integral equation (BIE) and the singularity can influence the reconstruction accuracy greatly. In this paper, the nonsingular BIE is introduced to the NAH calculation and the holographic BIE is reformulated. The effectiveness of nonsingular BEM has been investigated for the reduction of reconstruction error. Through interior and exterior examples, it is shown that the resolution of predicted field pressure could be improved in the close near field by employing the nonsingular BIE. Because the BEM-based NAH inevitably requires the field pressure measured in the close proximity to the source surface, the present approach is recommended for improving the resolution of the reconstructed source field.

摘要

在使用边界元法(BEM)的共形近场声全息术(NAH)中,关联源与场的振动声学特性的传递矩阵仅取决于问题的几何条件。已知这种NAH在处理具有不规则形状边界的源时非常有效。当使用这种共形NAH重建振动声源场时,人们倾向于将传感器尽可能靠近源表面放置,以便获取关于非传播波分量的丰富信息。基于基尔霍夫 - 亥姆霍兹积分方程的传统声学BEM在源表面的近场中存在奇异性问题。这个问题源于边界积分方程(BIE)的格林函数的奇异核,并且该奇异性会极大地影响重建精度。在本文中,将非奇异BIE引入到NAH计算中,并对全息BIE进行了重新表述。研究了非奇异BEM在降低重建误差方面的有效性。通过内部和外部示例表明,采用非奇异BIE可以提高近场中预测场压力的分辨率。由于基于BEM的NAH不可避免地需要在靠近源表面处测量场压力,因此推荐采用本方法来提高重建源场的分辨率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验