Alkon D L
Blânchette Rockefeller Neuroscience Institute, West Virginia University at Johns Hopkins University, Rockville, Maryland 20850 USA.
Biophys J. 2001 May;80(5):2056-61. doi: 10.1016/S0006-3495(01)76179-6.
In quantum theory, nothing that is observable, be it physical, chemical, or biological, is separable from the observer. Furthermore, ". all possible knowledge concerning that object is given by its wave function" (Wigner, E. 1967. Symmetries and Reflections. Indiana University Press, Bloomington, IN), which can only describe probabilities of future events. In physical systems, quantum mechanical probabilistic events that are microscopic must, in turn, account for macroscopic events that are associated with a greater degree of certainty. In biological systems, probabilistic statistical mechanical events, such as secretion of microscopic synaptic vesicles, must account for macroscopic postsynaptic potentials; probabilistic single-channel events sum to produce a macroscopic ionic current across a cell membrane; and bleaching of rhodopsin molecules (responsible for quantal potential "bumps") produces a photoreceptor generator potential. Among physical systems, a paradigmatic example of how quantum theory applies to the observation of events concerns the interactions of particles (e.g., photons, electrons) with the two-slit apparatus to generate an interference pattern from a single common light source. For two-slit systems that use two independent laser sources with brief (<1 ms) intervals of mutual coherence (Paul, H. 1986. Rev. Modern Phys. 58:209-231), each photon has been considered to arise from both beams and has a probability amplitude to pass through each of the two slits. Here, a single laser source two-slit interference system was constructed so that each photon has a probability amplitude to pass through only one or the other, but not both slits. Furthermore, all photons passing through one slit could be distinguished from all photons passing through the other slit before their passage. This "either-or" system produced a stable interference pattern indistinguishable from the interference produced when both slits were accessible to each photon. Because this system excludes the interaction of one photon with both slits, phase correlation of photon movements derives from the "entanglement" of all photon wave functions due to their dependence on a common laser source. Because a laser source (as well as Young's original point source) will have stable time-averaged spatial coherence even at low intensities, the "either-or" two-slit interference can result from distinct individual photons passing one at a time through one or the other slit-rather than wave-like behavior of individual photons. In this manner, single, successive photons passing through separate slits will assemble over time in phase-correlated wave distributions that converge in regions of low and high probability.
在量子理论中,任何可观测的事物,无论是物理的、化学的还是生物的,都与观察者不可分离。此外,“关于该对象的所有可能知识都由其波函数给出”(维格纳,E. 1967年。《对称性与反射》。印第安纳大学出版社,布卢明顿,印第安纳州),而波函数只能描述未来事件的概率。在物理系统中,微观的量子力学概率事件反过来必须解释与更高确定性相关的宏观事件。在生物系统中,概率性统计力学事件,如微观突触小泡的分泌,必须解释宏观的突触后电位;概率性单通道事件相加产生跨细胞膜的宏观离子电流;视紫红质分子的漂白(导致量子电位“峰值”)产生光感受器发生器电位。在物理系统中,量子理论如何应用于事件观测的一个典型例子涉及粒子(如光子、电子)与双缝装置的相互作用,以从单个共同光源产生干涉图样。对于使用两个具有短暂(<1毫秒)相互相干间隔的独立激光源的双缝系统(保罗,H. 1986年。《现代物理评论》58:209 - 231),每个光子都被认为来自两束光,并且有一个概率幅通过两条缝中的每一条。在此,构建了一个单激光源双缝干涉系统,使得每个光子只有一个概率幅通过其中一条缝,而不是两条缝都通过。此外,所有通过一条缝的光子在通过之前都可以与所有通过另一条缝的光子区分开来。这个“非此即彼”系统产生了一个稳定的干涉图样,与每个光子都可以通过两条缝时产生的干涉图样无法区分。因为这个系统排除了一个光子与两条缝的相互作用,光子运动的相位相关性源于所有光子波函数的“纠缠”,这是由于它们依赖于一个共同的激光源。因为即使在低强度下,激光源(以及杨氏原始点光源)也将具有稳定的时间平均空间相干性,所以“非此即彼”双缝干涉可能是由单个光子一次一个地通过其中一条或另一条缝导致的——而不是单个光子的波动行为。通过这种方式,单个连续通过不同缝的光子将随着时间在相位相关的波分布中聚集,这些分布在低概率和高概率区域汇聚。