Vivian J T, Callis P R
Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA.
Biophys J. 2001 May;80(5):2093-109. doi: 10.1016/S0006-3495(01)76183-8.
Tryptophan fluorescence wavelength is widely used as a tool to monitor changes in proteins and to make inferences regarding local structure and dynamics. We have predicted the fluorescence wavelengths of 19 tryptophans in 16 proteins, starting with crystal structures and using a hybrid quantum mechanical-classical molecular dynamics method with the assumption that only electrostatic interactions of the tryptophan ring electron density with the surrounding protein and solvent affect the transition energy. With only one adjustable parameter, the scaling of the quantum mechanical atomic charges as seen by the protein/solvent environment, the mean absolute deviation between predicted and observed fluorescence maximum wavelength is 6 nm. The modeling of electrostatic interactions, including hydration, in proteins is vital to understanding function and structure, and this study helps to assess the effectiveness of current electrostatic models.
色氨酸荧光波长被广泛用作监测蛋白质变化以及推断局部结构和动力学的工具。我们从晶体结构出发,采用量子力学-经典分子动力学混合方法,假设色氨酸环电子密度与周围蛋白质和溶剂的静电相互作用仅影响跃迁能量,预测了16种蛋白质中19个色氨酸的荧光波长。仅使用一个可调参数,即蛋白质/溶剂环境所看到的量子力学原子电荷的缩放比例,预测的荧光最大波长与观测值之间的平均绝对偏差为6纳米。蛋白质中静电相互作用(包括水合作用)的建模对于理解其功能和结构至关重要,本研究有助于评估当前静电模型的有效性。