Colaiori F, Moore M A
Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, United Kingdom.
Phys Rev Lett. 2001 Apr 30;86(18):3946-9. doi: 10.1103/PhysRevLett.86.3946.
We study the mode-coupling approximation for the Kardar-Parisi-Zhang equation in the strong-coupling regime. By constructing an ansatz consistent with the asymptotic forms of the correlation and response functions we determine the upper critical dimension d(c) = 4 and the expansion z = 2-(d-4)/4+O((4-d)2) around dc. We find the exact z = 3/2 value in d = 1, and estimate the values z approximately 1.62, z approximately 1.78 in d = 2, 3. The result dc = 4 and the expansion around dc are very robust and can be derived just from a mild assumption on the relative scale on which the response and correlation functions vary as z approaches 2.
我们研究了强耦合区域中 Kardar-Parisi-Zhang 方程的模式耦合近似。通过构建一个与关联函数和响应函数的渐近形式一致的假设,我们确定了上临界维度(d(c)=4)以及围绕(d_c)的展开式(z = 2 - (d - 4)/4 + O((4 - d)^2))。我们在(d = 1)时得到了精确的(z = 3/2)值,并估计了在(d = 2)、(3)时(z\approx1.62)、(z\approx1.78)的值。结果(d_c = 4)以及围绕(d_c)的展开式非常稳健,并且仅从关于响应函数和关联函数在(z)趋近于(2)时变化的相对尺度的一个温和假设就可以推导出来。