Suppr超能文献

A distributed reactivity model for sorption by soils and sediments 13. Simulated diagenesis of natural sediment organic matter and its impact on sorption/desorption equilibria.

作者信息

Johnson M D, Huang W, Weber W J

机构信息

Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125, USA.

出版信息

Environ Sci Technol. 2001 Apr 15;35(8):1680-7. doi: 10.1021/es001390s.

Abstract

Subcritical water treatment was used to effect rapid compositional and functional changes to peat organic matter that mimic those of the natural diagenesis process. Elemental, solid state 13C NMR, FTIR, and calorimetry analyses all indicated that the organic matter of the artificially aged peat was chemically similar to that of geologically mature coal kerogens. This paper extends the work of the previous paper in this series, which investigated the effects of subcritical water treatment of humic topsoil on subsequent phenanthrene sorption and desorption equilibria. As opposed to the previous study, however, changes in sorptive reactivity herein were unequivocally related to changes in organic matter rather than other soil constituents, and organic matter functional changes due to the simulated diagenesis were more accurately characterized. Phenanthrene sorption capacity and isotherm nonlinearity both increased with increasing degrees of artificial aging, supporting the viewpoint that hydrophobic organic contaminant sorption equilibrium properties can be directly related to the degree of diagenesis of geosorbent organic matter. In addition, this work investigated effects of subcritical water treatment of a geologically mature, kerogen-containing shale sample. In contrast to the peat, the functional characteristics of the shale were unchanged by this treatment, and subsequent phenanthrene sorption equilibria were altered far less.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验