Suppr超能文献

Cyclic tensile stretch inhibition of nitric oxide release from osteoblast-like cells is both G protein and actin-dependent.

作者信息

Hara F, Fukuda K, Asada S, Matsukawa M, Hamanishi C

机构信息

Department of Orthopaedic Surgery, Kinki University, School of Medicine, Osaka, Japan.

出版信息

J Orthop Res. 2001 Jan;19(1):126-31. doi: 10.1016/S0736-0266(00)00011-5.

Abstract

Recent reports indicate the alteration of nitric oxide (NO) synthesis with mechanical stress loaded on the osteoblast and NO is considered to have a significant role in mechanotransduction. We found the involvement of guanine-nucleotide-binding regulatory proteins (G proteins), especially Gi, in stress-inhibited NO release of osteoblast-like cells (JOR:17;593-597, 1999). To determine further the mechanism involved in this process, we measured c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) activity under cyclic tensile stretch loaded on osteoblast-like cells. Cyclic stretch significantly enhanced JNK/SAPK activity and pertussis toxin clearly reversed stress-enhanced JNK/SAPK activity. Cytochalasin D, actin microfilament disrupting reagent, also abolished the stress activation of JNK/SAPK. We propose a model for signaling events induced by cyclic tensile stretch, namely a transmembrane mechanosensor which couples Gi-protein, actin cytoskeleton and finally activates JNK/SAPK activity of osteoblasts.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验