Suppr超能文献

噬菌体T4中拓扑异构酶介导的DNA损伤修复

Repair of topoisomerase-mediated DNA damage in bacteriophage T4.

作者信息

Stohr B A, Kreuzer K N

机构信息

Departments of Microbiology and Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Genetics. 2001 May;158(1):19-28. doi: 10.1093/genetics/158.1.19.

Abstract

Type II topoisomerase inhibitors are used to treat both tumors and bacterial infections. These inhibitors stabilize covalent DNA-topoisomerase cleavage complexes that ultimately cause lethal DNA damage. A functional recombinational repair apparatus decreases sensitivity to these drugs, suggesting that topoisomerase-mediated DNA damage is amenable to such repair. Using a bacteriophage T4 model system, we have developed a novel in vivo plasmid-based assay that allows physical analysis of the repair products from one particular topoisomerase cleavage site. We show that the antitumor agent 4'-(9-acridinylamino)methanesulphon-m-anisidide (m-AMSA) stabilizes the T4 type II topoisomerase at the strong topoisomerase cleavage site on the plasmid, thereby stimulating recombinational repair. The resulting m-AMSA-dependent repair products do not form in the absence of functional topoisomerase and appear at lower drug concentrations with a drug-hypersensitive topoisomerase mutant. The appearance of repair products requires that the plasmid contain a T4 origin of replication. Finally, genetic analyses demonstrate that repair product formation is absolutely dependent on genes 32 and 46, largely dependent on genes uvsX and uvsY, and only partly dependent on gene 49. Very similar genetic requirements are observed for repair of endonuclease-generated double-strand breaks, suggesting mechanistic similarity between the two repair pathways.

摘要

II型拓扑异构酶抑制剂可用于治疗肿瘤和细菌感染。这些抑制剂能稳定共价DNA-拓扑异构酶切割复合物,最终导致致命的DNA损伤。功能性重组修复机制会降低对这些药物的敏感性,这表明拓扑异构酶介导的DNA损伤可通过这种修复方式来处理。利用噬菌体T4模型系统,我们开发了一种基于体内质粒的新型检测方法,可对来自一个特定拓扑异构酶切割位点的修复产物进行物理分析。我们发现抗肿瘤药物4'-(9-吖啶基氨基)甲磺基间茴香胺(m-AMSA)能使T4 II型拓扑异构酶稳定在质粒上的强拓扑异构酶切割位点,从而刺激重组修复。在缺乏功能性拓扑异构酶的情况下,不会形成由此产生的依赖m-AMSA的修复产物,并且在药物敏感的拓扑异构酶突变体中,修复产物会在较低药物浓度下出现。修复产物的出现要求质粒含有T4复制起点。最后,遗传学分析表明,修复产物的形成绝对依赖于基因32和46,很大程度上依赖于基因uvsX和uvsY,仅部分依赖于基因49。在内切酶产生的双链断裂修复中也观察到非常相似的遗传需求,这表明两种修复途径之间存在机制上的相似性。

相似文献

1
Repair of topoisomerase-mediated DNA damage in bacteriophage T4.
Genetics. 2001 May;158(1):19-28. doi: 10.1093/genetics/158.1.19.
3
An antitumor drug-induced topoisomerase cleavage complex blocks a bacteriophage T4 replication fork in vivo.
Mol Cell Biol. 2000 Jan;20(2):594-603. doi: 10.1128/MCB.20.2.594-603.2000.
9
The tight linkage between DNA replication and double-strand break repair in bacteriophage T4.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8290-7. doi: 10.1073/pnas.131007598.
10
Bacteriophage T4, a model system for understanding the mechanism of type II topoisomerase inhibitors.
Biochim Biophys Acta. 1998 Oct 1;1400(1-3):339-47. doi: 10.1016/s0167-4781(98)00145-6.

引用本文的文献

1
Mechanisms and Regulation of DNA-Protein Crosslink Repair During DNA Replication by SPRTN Protease.
Front Mol Biosci. 2022 Jun 15;9:916697. doi: 10.3389/fmolb.2022.916697. eCollection 2022.
2
Excision repair of topoisomerase DNA-protein crosslinks (TOP-DPC).
DNA Repair (Amst). 2020 May;89:102837. doi: 10.1016/j.dnarep.2020.102837. Epub 2020 Mar 7.
3
DNA-protein cross-link repair: what do we know now?
Cell Biosci. 2020 Jan 7;10:3. doi: 10.1186/s13578-019-0366-z. eCollection 2020.
4
DNA- and DNA-Protein-Crosslink Repair in Plants.
Int J Mol Sci. 2019 Sep 3;20(17):4304. doi: 10.3390/ijms20174304.
5
Mechanisms of DNA-protein crosslink repair.
Nat Rev Mol Cell Biol. 2017 Sep;18(9):563-573. doi: 10.1038/nrm.2017.56. Epub 2017 Jun 28.
7
Rad50 is dispensable for the maintenance and viability of postmitotic tissues.
Mol Cell Biol. 2009 Jan;29(2):483-92. doi: 10.1128/MCB.01525-08. Epub 2008 Nov 10.
8
DNA damage signaling in hematopoietic cells: a role for Mre11 complex repair of topoisomerase lesions.
Cancer Res. 2008 Apr 1;68(7):2186-93. doi: 10.1158/0008-5472.CAN-07-2355.
10
Endonucleolytic processing of covalent protein-linked DNA double-strand breaks.
Nature. 2005 Aug 18;436(7053):1053-7. doi: 10.1038/nature03872.

本文引用的文献

1
Links between replication, recombination and genome instability in eukaryotes.
Trends Biochem Sci. 2000 Apr;25(4):196-200. doi: 10.1016/s0968-0004(00)01568-1.
2
Recombination-dependent DNA replication in phage T4.
Trends Biochem Sci. 2000 Apr;25(4):165-73. doi: 10.1016/s0968-0004(00)01559-0.
3
An antitumor drug-induced topoisomerase cleavage complex blocks a bacteriophage T4 replication fork in vivo.
Mol Cell Biol. 2000 Jan;20(2):594-603. doi: 10.1128/MCB.20.2.594-603.2000.
4
Role of exonucleolytic degradation in group I intron homing in phage T4.
Genetics. 1999 Dec;153(4):1501-12. doi: 10.1093/genetics/153.4.1501.
5
Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes.
Science. 1999 Oct 15;286(5439):552-5. doi: 10.1126/science.286.5439.552.
6
Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 1999 Jun;63(2):349-404. doi: 10.1128/MMBR.63.2.349-404.1999.
7
The role of homologous recombination processes in the repair of severe forms of DNA damage in mammalian cells.
Biochimie. 1999 Jan-Feb;81(1-2):77-85. doi: 10.1016/s0300-9084(99)80041-8.
8
Secondary leukemias induced by topoisomerase-targeted drugs.
Biochim Biophys Acta. 1998 Oct 1;1400(1-3):233-55. doi: 10.1016/s0167-4781(98)00139-0.
9
Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme.
Biochim Biophys Acta. 1998 Oct 1;1400(1-3):139-54. doi: 10.1016/s0167-4781(98)00132-8.
10
Clinical applications of quinolones.
Biochim Biophys Acta. 1998 Oct 1;1400(1-3):45-61. doi: 10.1016/s0167-4781(98)00127-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验