Stohr B A, Kreuzer K N
Departments of Microbiology and Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
Genetics. 2001 May;158(1):19-28. doi: 10.1093/genetics/158.1.19.
Type II topoisomerase inhibitors are used to treat both tumors and bacterial infections. These inhibitors stabilize covalent DNA-topoisomerase cleavage complexes that ultimately cause lethal DNA damage. A functional recombinational repair apparatus decreases sensitivity to these drugs, suggesting that topoisomerase-mediated DNA damage is amenable to such repair. Using a bacteriophage T4 model system, we have developed a novel in vivo plasmid-based assay that allows physical analysis of the repair products from one particular topoisomerase cleavage site. We show that the antitumor agent 4'-(9-acridinylamino)methanesulphon-m-anisidide (m-AMSA) stabilizes the T4 type II topoisomerase at the strong topoisomerase cleavage site on the plasmid, thereby stimulating recombinational repair. The resulting m-AMSA-dependent repair products do not form in the absence of functional topoisomerase and appear at lower drug concentrations with a drug-hypersensitive topoisomerase mutant. The appearance of repair products requires that the plasmid contain a T4 origin of replication. Finally, genetic analyses demonstrate that repair product formation is absolutely dependent on genes 32 and 46, largely dependent on genes uvsX and uvsY, and only partly dependent on gene 49. Very similar genetic requirements are observed for repair of endonuclease-generated double-strand breaks, suggesting mechanistic similarity between the two repair pathways.
II型拓扑异构酶抑制剂可用于治疗肿瘤和细菌感染。这些抑制剂能稳定共价DNA-拓扑异构酶切割复合物,最终导致致命的DNA损伤。功能性重组修复机制会降低对这些药物的敏感性,这表明拓扑异构酶介导的DNA损伤可通过这种修复方式来处理。利用噬菌体T4模型系统,我们开发了一种基于体内质粒的新型检测方法,可对来自一个特定拓扑异构酶切割位点的修复产物进行物理分析。我们发现抗肿瘤药物4'-(9-吖啶基氨基)甲磺基间茴香胺(m-AMSA)能使T4 II型拓扑异构酶稳定在质粒上的强拓扑异构酶切割位点,从而刺激重组修复。在缺乏功能性拓扑异构酶的情况下,不会形成由此产生的依赖m-AMSA的修复产物,并且在药物敏感的拓扑异构酶突变体中,修复产物会在较低药物浓度下出现。修复产物的出现要求质粒含有T4复制起点。最后,遗传学分析表明,修复产物的形成绝对依赖于基因32和46,很大程度上依赖于基因uvsX和uvsY,仅部分依赖于基因49。在内切酶产生的双链断裂修复中也观察到非常相似的遗传需求,这表明两种修复途径之间存在机制上的相似性。