Suppr超能文献

抗真菌靶点酵母高丝氨酸脱氢酶的特性:不变的组氨酸309对酶的完整性很重要。

Characterization of yeast homoserine dehydrogenase, an antifungal target: the invariant histidine 309 is important for enzyme integrity.

作者信息

Jacques S L, Nieman C, Bareich D, Broadhead G, Kinach R, Honek J F, Wright G D

机构信息

Antimicrobisl Research Center, Departmentof Biochemistry, McMaster University, Hamilton, Ont, Canada.

出版信息

Biochim Biophys Acta. 2001 Jan 12;1544(1-2):28-41. doi: 10.1016/s0167-4838(00)00203-x.

Abstract

Fungal homoserine dehydrogenase (HSD) is required for the biosynthesis of threonine, isoleucine and methionine from aspartic acid, and is a target for antifungal agents. HSD from the yeast Saccharomyces cerevisiae was overproduced in Escherichia coli and 25 mg of soluble dimeric enzyme was purified per liter of cell culture in two steps. HSD efficiently reduces aspartate semialdehyde to homoserine (Hse) using either NADH or NADPH with kcat/Km in the order of 10(6-7) M(-1) x s(-1) at pH 7.5. The rate constant of the reverse direction (Hse oxidation) was also significant at pH 9.0 (kcat/Km approximately 10(4-5) M(-1) x s(-1)) but was minimal at pH 7.5. Chemical modification of HSD with diethyl pyrocarbonate (DEPC) resulted in a loss of activity that could be obviated by the presence of substrates. UV difference spectra revealed an increase in absorbance at 240 nm for DEPC-modified HSD consistent with the modification of two histidines (His) per subunit. Amino acid sequence alignment of HSD illustrated the conservation of two His residues among HSDs. These residues, His79 and His309, were substituted to alanine (Ala) using site directed mutagenesis. HSD H79A had similar steady state kinetics to wild type, while kcat/Km for HSD H309A decreased by almost two orders of magnitude. The recent determination of the X-ray structure of HSD revealed that His309 is located at the dimer interface [B. DeLaBarre, P.R. Thompson, G.D. Wright, A.M. Berghuis, Nat. Struct. Biol. 7 (2000) 238-244]. The His309Ala mutant enzyme was found in very high molecular weight complexes rather than the expected dimer by analytical gel filtration chromatography analysis. Thus the invariant His309 plays a structural rather than catalytic role in these enzymes.

摘要

真菌高丝氨酸脱氢酶(HSD)是天冬氨酸生物合成苏氨酸、异亮氨酸和蛋氨酸所必需的,并且是抗真菌剂的作用靶点。来自酿酒酵母的HSD在大肠杆菌中过量表达,通过两步法每升细胞培养物可纯化得到25毫克可溶性二聚体酶。HSD在pH 7.5时,使用NADH或NADPH能有效地将天冬氨酸半醛还原为高丝氨酸(Hse),其催化常数与米氏常数之比(kcat/Km)约为10(6 - 7) M(-1)×s(-1)。在pH 9.0时,逆向反应(Hse氧化)的速率常数也很显著(kcat/Km约为10(4 - 5) M(-1)×s(-1)),但在pH 7.5时最小。用焦碳酸二乙酯(DEPC)对HSD进行化学修饰导致活性丧失,而底物的存在可以消除这种丧失。紫外差光谱显示,DEPC修饰的HSD在240 nm处吸光度增加,这与每个亚基的两个组氨酸(His)被修饰一致。HSD的氨基酸序列比对表明,HSDs中两个His残基具有保守性。使用定点诱变将这些残基His79和His309替换为丙氨酸(Ala)。HSD H79A与野生型具有相似的稳态动力学,而HSD H309A的kcat/Km下降了近两个数量级。最近对HSD的X射线结构测定表明,His309位于二聚体界面[B. DeLaBarre, P.R. Thompson, G.D. Wright, A.M. Berghuis, Nat. Struct. Biol. 7 (2000) 238 - 244]。通过分析凝胶过滤色谱分析发现,His309Ala突变酶存在于非常高的分子量复合物中,而不是预期的二聚体中。因此,不变的His309在这些酶中起结构作用而非催化作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验