Brickley S G, Revilla V, Cull-Candy S G, Wisden W, Farrant M
Department of Pharmacology, University College London, London WC1E 6BT, UK.
Nature. 2001 Jan 4;409(6816):88-92. doi: 10.1038/35051086.
Many neurons receive a continuous, or 'tonic', synaptic input, which increases their membrane conductance, and so modifies the spatial and temporal integration of excitatory signals. In cerebellar granule cells, although the frequency of inhibitory synaptic currents is relatively low, the spillover of synaptically released GABA (gamma-aminobutyric acid) gives rise to a persistent conductance mediated by the GABA A receptor that also modifies the excitability of granule cells. Here we show that this tonic conductance is absent in granule cells that lack the alpha6 and delta-subunits of the GABAA receptor. The response of these granule cells to excitatory synaptic input remains unaltered, owing to an increase in a 'leak' conductance, which is present at rest, with properties characteristic of the two-pore-domain K+ channel TASK-1 (refs 9,10,11,12). Our results highlight the importance of tonic inhibition mediated by GABAA receptors, loss of which triggers a form of homeostatic plasticity leading to a change in the magnitude of a voltage-independent K + conductance that maintains normal neuronal behaviour.
许多神经元会接收持续的或“紧张性”的突触输入,这种输入会增加它们的膜电导,从而改变兴奋性信号的空间和时间整合。在小脑颗粒细胞中,尽管抑制性突触电流的频率相对较低,但突触释放的γ-氨基丁酸(GABA)的溢出会产生一种由GABAA受体介导的持续电导,这种电导也会改变颗粒细胞的兴奋性。我们在此表明,缺乏GABAA受体α6和δ亚基的颗粒细胞中不存在这种紧张性电导。这些颗粒细胞对兴奋性突触输入的反应保持不变,这是由于一种“泄漏”电导增加所致,这种电导在静息时就存在,具有双孔结构域钾通道TASK-1的特性(参考文献9、10、11、12)。我们的结果突出了由GABAA受体介导的紧张性抑制的重要性,其缺失会引发一种稳态可塑性,导致维持正常神经元行为的电压非依赖性钾电导幅度发生变化。