Suppr超能文献

Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates.

作者信息

Neidlinger-Wilke C, Grood E S, Brand R A, Claes L

机构信息

Abteilung Unfallchirurgische Forschung und Biomrechanik der Universität Ulm, Germany.

出版信息

J Orthop Res. 2001 Mar;19(2):286-93. doi: 10.1016/S0736-0266(00)00029-2.

Abstract

Many types of cells, when grown on the surface of a cyclically stretched substrate, align away from the stretch direction. Although cell alignment has been described as an avoidance response to stretch, the specific deformation signal that causes a cell population to become aligned has not been identified. Planar surface deformation is characterized by three strains: two normal strains describe the length changes of two initially perpendicular lines and one shear strain describes the change in the angle between the two lines. The present study was designed to determine which, if any, of the three strains was the signal for cell alignment. Human fibroblasts and osteoblasts were grown in deformable, rectangular, silicone culture dishes coated with ProNectin, a biosynthetic polymer containing the RGD ligand of fibronectin. 24 h after plating the cells, the dishes were cyclically stretched at 1 Hz to peak dish stretches of 0% (control), 4%, 8%, and 12%. After 24 h of stretching, the cells were fixed, stained, and their orientations measured. The cell orientation distribution was determined by calculating the percent of cells whose orientation was within each of eighteen 5 degrees angular intervals. We found that the alignment response was primarily driven by the substrate strain which tended to lengthen the cell (axial strain). We also found that for each cell type there was an axial strain limit above which few cells were found. The axial strain limit for fibroblasts, 4.2 +/- 0.4%, (mean +/- 95% confidence), was lower than for osteoblasts, 6.4 +/- 0.6%. We suggest that the fibroblasts are more responsive to stretch because of their more highly developed actin cytoskeleton.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验