Suppr超能文献

Prenatal and postnatal expression of nitric oxide in the developing kitten superior colliculus revealed with NADPH diaphorase histochemistry.

作者信息

Scheiner C A, Kratz K E, Guido W, Mize R R

机构信息

Department of Cell Biology and Anatomy and the Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans 70112, USA.

出版信息

Vis Neurosci. 2001 Jan-Feb;18(1):43-54. doi: 10.1017/s0952523801181046.

Abstract

Nitric oxide (NO) is a neuronal messenger molecule that mediates pathway refinement in some brain regions. We used nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry to examine the development of NO expression in the superior colliculus (SC) of kittens aged E28-E58 and P2-P57 and adults in order to determine if NO expression is correlated with pathway refinement. At E28, labeled cells were seen only within the subventricular zone (SVZ). At E36-E41, labeled cells were also found within the deep gray layer (DGL) of SC. At E51 and E58, a few labeled neurons were also present in the intermediate gray layer (IGL). These neurons already had extensive dendritic fields and well-developed morphologies at the time that they first expressed nitric oxide synthase (NOS). The number of neurons labeled in the DGL and IGL increased postnatally, reaching a peak density between P14 and P35. Neurons within the optic (OL) and superficial gray layers (SGL) were first visible at P7 and increased slightly in number until adulthood. However, SGL-labeled neurons were relatively limited in number and lightly labeled at all ages examined. We conclude that (1) NADPHd expression occurs in SC beginning in the second trimester in kittens and progresses in a ventral to dorsal pattern between E36-P35; (2) few neurons in kitten SGL are labeled by NADPHd and these appear relatively late in postnatal development; and (3) there is no correlation between NOS expression and retinocollicular pathway refinement in kittens, a result different from that seen in rodents.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验