Dessens J T, Mendoza J, Claudianos C, Vinetz J M, Khater E, Hassard S, Ranawaka G R, Sinden R E
Department of Biology, Imperial College of Science, Technology, and Medicine, London SW7 2AZ, United Kingdom.
Infect Immun. 2001 Jun;69(6):4041-7. doi: 10.1128/IAI.69.6.4041-4047.2001.
During mosquito transmission, malaria ookinetes must cross a chitin-containing structure known as the peritrophic matrix (PM), which surrounds the infected blood meal in the mosquito midgut. In turn, ookinetes produce multiple chitinase activities presumably aimed at disrupting this physical barrier to allow ookinete invasion of the midgut epithelium. Plasmodium chitinase activities are demonstrated targets for human and avian malaria transmission blockade with the chitinase inhibitor allosamidin. Here, we identify and characterize the first chitinase gene of a rodent malaria parasite, Plasmodium berghei. We show that the gene, named PbCHT1, is a structural ortholog of PgCHT1 of the avian malaria parasite Plasmodium gallinaceum and a paralog of PfCHT1 of the human malaria parasite Plasmodium falciparum. Targeted disruption of PbCHT1 reduced parasite infectivity in Anopheles stephensi mosquitoes by up to 90%. Reductions in infectivity were also observed in ookinete feeds-an artificial situation where midgut invasion occurs before PM formation-suggesting that PbCHT1 plays a role other than PM disruption. PbCHT1 null mutants had no residual ookinete-derived chitinase activity in vitro, suggesting that P. berghei ookinetes express only one chitinase gene. Moreover, PbCHT1 activity appeared insensitive to allosamidin inhibition, an observation that raises questions about the use of allosamidin and components like it as potential malaria transmission-blocking drugs. Taken together, these findings suggest a fundamental divergence among rodent, avian, and human malaria parasite chitinases, with implications for the evolution of Plasmodium-mosquito interactions.
在蚊子传播过程中,疟原虫动合子必须穿过一种含几丁质的结构,即围食膜(PM),它包围着蚊子中肠内受感染的血餐。相应地,动合子产生多种几丁质酶活性,推测其目的是破坏这一物理屏障,以便动合子侵入中肠上皮。疟原虫几丁质酶活性是几丁质酶抑制剂别洛沙米定阻断人类和禽类疟疾传播的已证实靶点。在此,我们鉴定并表征了啮齿动物疟原虫伯氏疟原虫的首个几丁质酶基因。我们发现,该基因名为PbCHT1,是禽类疟原虫鸡疟原虫的PgCHT1的结构直系同源物,也是人类疟原虫恶性疟原虫的PfCHT1的旁系同源物。靶向破坏PbCHT1可使斯氏按蚊中寄生虫的感染性降低多达90%。在动合子喂食实验中也观察到感染性降低,这是一种在围食膜形成之前就发生中肠入侵的人为情况,表明PbCHT1发挥的作用并非仅限于破坏围食膜。PbCHT1基因敲除突变体在体外没有残留的动合子衍生几丁质酶活性,这表明伯氏疟原虫动合子仅表达一个几丁质酶基因。此外,PbCHT1的活性似乎对别洛沙米定抑制不敏感,这一观察结果引发了对于将别洛沙米定及其类似成分用作潜在疟疾传播阻断药物的质疑。综上所述,这些发现表明啮齿动物、禽类和人类疟原虫的几丁质酶存在根本差异,这对疟原虫与蚊子相互作用的进化具有重要意义。