Cordell S C, Anderson R E, Löwe J
MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
EMBO J. 2001 May 15;20(10):2454-61. doi: 10.1093/emboj/20.10.2454.
Bacterial cell division requires accurate selection of the middle of the cell, where the bacterial tubulin homologue FtsZ polymerizes into a ring structure. In Escherichia coli, site selection is dependent on MinC, MinD and MINE: MinC acts, with MinD, to inhibit division at sites other than the midcell by directly interacting with FTSZ: Here we report the crystal structure to 2.2 A of MinC from Thermotoga maritima. MinC consists of two domains separated by a short linker. The C-terminal domain is a right-handed beta-helix and is involved in dimer formation. The crystals contain two different MinC dimers, demonstrating flexibility in the linker region. The two-domain architecture and dimerization of MinC can be rationalized with a model of cell division inhibition. MinC does not act like SulA, which affects the GTPase activity of FtsZ, and the model can explain how MinC would select for the FtsZ polymer rather than the monomer.
细菌细胞分裂需要精确选择细胞中部,细菌微管蛋白同源物FtsZ在此聚合形成环状结构。在大肠杆菌中,位点选择依赖于MinC、MinD和MINE:MinC与MinD共同作用,通过直接与FTSZ相互作用来抑制细胞中部以外位点的分裂。在此,我们报道了来自嗜热栖热菌的MinC的2.2埃晶体结构。MinC由两个结构域通过一个短连接子分隔开。C端结构域是一个右手β-螺旋,参与二聚体形成。晶体包含两种不同的MinC二聚体,表明连接子区域具有灵活性。MinC的双结构域架构和二聚化可以用细胞分裂抑制模型来解释。MinC的作用方式与影响FtsZ GTP酶活性的SulA不同,该模型可以解释MinC如何选择FtsZ聚合物而非单体。