Yim L, Vandenbussche G, Mingorance J, Rueda S, Casanova M, Ruysschaert J M, Vicente M
Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain.
J Bacteriol. 2000 Nov;182(22):6366-73. doi: 10.1128/JB.182.22.6366-6373.2000.
The role of the carboxy terminus of the Escherichia coli cell division protein FtsA in bacterial division has been studied by making a series of short sequential deletions spanning from residue 394 to 420. Deletions as short as 5 residues destroy the biological function of the protein. Residue W415 is essential for the localization of the protein into septal rings. Overexpression of the ftsA alleles harboring these deletions caused a coiled cell phenotype previously described for another carboxy-terminal mutation (Gayda et al., J. Bacteriol. 174:5362-5370, 1992), suggesting that an interaction of FtsA with itself might play a role in its function. The existence of such an interaction was demonstrated using the yeast two-hybrid system and a protein overlay assay. Even these short deletions are sufficient for impairing the interaction of the truncated FtsA forms with the wild-type protein in the yeast two-hybrid system. The existence of additional interactions between FtsA molecules, involving other domains, can be postulated from the interaction properties shown by the FtsA deletion mutant forms, because although unable to interact with the wild-type and with FtsADelta1, they can interact with themselves and cross-interact with each other. The secondary structures of an extensive deletion, FtsADelta27, and the wild-type protein are indistinguishable when analyzed by Fourier transform infrared spectroscopy, and moreover, FtsADelta27 retains the ability to bind ATP. These results indicate that deletion of the carboxy-terminal 27 residues does not alter substantially the structure of the protein and suggest that the loss of biological function of the carboxy-terminal deletion mutants might be related to the modification of their interacting properties.
通过构建一系列从第394位残基到420位残基的短序列缺失突变体,研究了大肠杆菌细胞分裂蛋白FtsA的羧基末端在细菌分裂中的作用。短至5个残基的缺失就会破坏该蛋白的生物学功能。残基W415对于该蛋白定位于隔膜环至关重要。携带这些缺失的ftsA等位基因的过表达导致了先前针对另一个羧基末端突变所描述的卷曲细胞表型(Gayda等人,《细菌学杂志》174:5362 - 5370,1992),这表明FtsA自身的相互作用可能在其功能中发挥作用。利用酵母双杂交系统和蛋白质覆盖分析证明了这种相互作用的存在。即使是这些短缺失也足以削弱酵母双杂交系统中截短的FtsA形式与野生型蛋白的相互作用。从FtsA缺失突变体形式所显示的相互作用特性可以推测,FtsA分子之间还存在涉及其他结构域的额外相互作用,因为尽管它们不能与野生型和FtsADelta1相互作用,但它们可以自身相互作用并相互交叉作用。通过傅里叶变换红外光谱分析,广泛缺失的FtsADelta27和野生型蛋白的二级结构无法区分,此外,FtsADelta27保留了结合ATP的能力。这些结果表明,羧基末端27个残基的缺失并没有显著改变该蛋白的结构,并表明羧基末端缺失突变体生物学功能的丧失可能与其相互作用特性的改变有关。