Suppr超能文献

Pathogen filtration, heterogeneity, and the potable reuse of wastewater.

作者信息

Redman J A, Grant S B, Olson T M, Estes M K

机构信息

Department of Chemical and Biochemical Engineering and Material Science, University of California, Irvine, California 92697, USA.

出版信息

Environ Sci Technol. 2001 May 1;35(9):1798-805. doi: 10.1021/es0010960.

Abstract

Filtration is commonly employed in water and wastewater treatment to remove particles and reduce the concentration of microbial pathogens. All physical models of packed-bed filtration are based on a proportional relationship between particle removal per unit depth of bed and the local particle concentration, dC/dz = -C/l, where l is the filtration length scale. Although l is known to vary with time and filter depth for heterogeneous suspensions or "dirty" beds, this paper demonstrates that the filtration rates of even seemingly monodisperse particle suspensions under clean-bed filtration conditions cannot be described with a single filtration length scale. A new model is derived for particle filtration that accounts for heterogeneity at two different spatial scales. Heterogeneity at the scale of the pathogen and/or collector (microscale heterogeneity) leads to a slow power-law decay of contaminant concentration with distance, instead of the fast exponential decay predicted by the standard model. Heterogeneity at the filter scale (macroscale heterogeneity) provides another level of complexity that can be evaluated once microscale heterogeneity effects are characterized. This model for microscale and macroscale heterogeneous particle filtration is verified by filtration experiments on a recombinant analogue of the waterborne pathogen Norwalk virus.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验