Kupke T
Lehrstuhl für Mikrobielle Genetik, Universität Tübingen, Auf der Morgenstelle 15, Verfügungsgebäude, 72076 Tübingen, Germany.
J Biol Chem. 2001 Jul 20;276(29):27597-604. doi: 10.1074/jbc.M103342200. Epub 2001 May 17.
The NH(2)-terminal domain of the bacterial flavoprotein Dfp catalyzes the decarboxylation of (R)-4'-phospho-N-pantothenoylcysteine to 4'-phosphopantetheine, a key step in coenzyme A biosynthesis. Dfp proteins, LanD proteins (for example EpiD, which is involved in epidermin biosynthesis), and the salt tolerance protein AtHAL3a from Arabidopsis thaliana are homooligomeric flavin-containing Cys decarboxylases (HFCD protein family). The crystal structure of the peptidyl-cysteine decarboxylase EpiD complexed with a pentapeptide substrate has recently been determined. The peptide is bound by an NH(2)-terminal substrate binding helix, residue Asn(117), which contacts the cysteine residue of the substrate, and a COOH-terminal substrate recognition clamp. The conserved motif G-G/S-I-A-X-Y-K of the Dfp proteins aligns partly with the substrate binding helix of EpiD. Point mutations within this motif resulted in loss of coenzyme binding (G14S) or in significant decrease of Dfp activity (G15A, I16L, A17D, K20N, K20Q). Exchange of Asn(125) of Dfp, which corresponds to Asn(117) of EpiD, and exchange of Cys(158), which is within the proposed substrate recognition clamp of Dfp, led to inactivity of the enzyme. Molecular analysis of the conditional lethality of the Escherichia coli dfp-707 mutant revealed that the single point mutation G11D of Dfp is related to decreased amounts of soluble Dfp protein at 37 degrees C.
细菌黄素蛋白Dfp的NH(2)末端结构域催化(R)-4'-磷酸-N-泛酰半胱氨酸脱羧生成4'-磷酸泛酰巯基乙胺,这是辅酶A生物合成中的关键步骤。Dfp蛋白、LanD蛋白(例如参与表皮菌素生物合成的EpiD)以及来自拟南芥的耐盐蛋白AtHAL3a均为含黄素的同寡聚体半胱氨酸脱羧酶(HFCD蛋白家族)。最近已确定与五肽底物复合的肽基半胱氨酸脱羧酶EpiD的晶体结构。该肽由一个NH(2)末端底物结合螺旋、与底物的半胱氨酸残基接触的Asn(117)残基以及一个COOH末端底物识别夹结合。Dfp蛋白保守基序G-G/S-I-A-X-Y-K部分与EpiD的底物结合螺旋对齐。该基序内的点突变导致辅酶结合丧失(G14S)或Dfp活性显著降低(G15A、I16L、A17D、K20N、K20Q)。将Dfp中对应于EpiD的Asn(117)的Asn(125)进行交换,以及将Dfp的拟底物识别夹内Cys(158)进行交换,导致该酶失活。对大肠杆菌dfp - 707突变体条件致死性的分子分析表明,Dfp的单点突变G11D与37℃时可溶性Dfp蛋白量减少有关。