Suppr超能文献

热休克蛋白70分子伴侣促进酵母中囊性纤维化跨膜传导调节因子的内质网相关蛋白降解。

Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast.

作者信息

Zhang Y, Nijbroek G, Sullivan M L, McCracken A A, Watkins S C, Michaelis S, Brodsky J L

机构信息

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.

出版信息

Mol Biol Cell. 2001 May;12(5):1303-14. doi: 10.1091/mbc.12.5.1303.

Abstract

Membrane and secretory proteins fold in the endoplasmic reticulum (ER), and misfolded proteins may be retained and targeted for ER-associated protein degradation (ERAD). To elucidate the mechanism by which an integral membrane protein in the ER is degraded, we studied the fate of the cystic fibrosis transmembrane conductance regulator (CFTR) in the yeast Saccharomyces cerevisiae. Our data indicate that CFTR resides in the ER and is stabilized in strains defective for proteasome activity or deleted for the ubiquitin-conjugating enzymes Ubc6p and Ubc7p, thus demonstrating that CFTR is a bona fide ERAD substrate in yeast. We also found that heat shock protein 70 (Hsp70), although not required for the degradation of soluble lumenal ERAD substrates, is required to facilitate CFTR turnover. Conversely, calnexin and binding protein (BiP), which are required for the proteolysis of ER lumenal proteins in both yeast and mammals, are dispensable for the degradation of CFTR, suggesting unique mechanisms for the disposal of at least some soluble and integral membrane ERAD substrates in yeast.

摘要

膜蛋白和分泌蛋白在内质网(ER)中折叠,错误折叠的蛋白可能会被滞留并靶向进行内质网相关蛋白降解(ERAD)。为了阐明内质网中整合膜蛋白被降解的机制,我们研究了囊性纤维化跨膜传导调节因子(CFTR)在酿酒酵母中的命运。我们的数据表明,CFTR定位于内质网,并且在蛋白酶体活性缺陷的菌株中或泛素结合酶Ubc6p和Ubc7p缺失的菌株中稳定存在,从而证明CFTR是酵母中真正的ERAD底物。我们还发现,热休克蛋白70(Hsp70)虽然不是可溶性内质网腔ERAD底物降解所必需的,但它是促进CFTR周转所必需的。相反,钙连蛋白和结合蛋白(BiP)在酵母和哺乳动物中都是内质网腔蛋白蛋白水解所必需的,但它们对于CFTR的降解是可有可无的,这表明在酵母中至少有一些可溶性和整合膜ERAD底物的处理存在独特机制。

相似文献

3
Expression and degradation of the cystic fibrosis transmembrane conductance regulator in Saccharomyces cerevisiae.
Arch Biochem Biophys. 2001 Jun 15;390(2):195-205. doi: 10.1006/abbi.2001.2385.
5
The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation.
Nat Cell Biol. 2001 Jan;3(1):100-5. doi: 10.1038/35050509.
6
Previously unknown role for the ubiquitin ligase Ubr1 in endoplasmic reticulum-associated protein degradation.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15271-6. doi: 10.1073/pnas.1304928110. Epub 2013 Aug 29.
7
Degradation of CFTR by the ubiquitin-proteasome pathway.
Cell. 1995 Oct 6;83(1):121-7. doi: 10.1016/0092-8674(95)90240-6.
9
Delta F508 CFTR pool in the endoplasmic reticulum is increased by calnexin overexpression.
Mol Biol Cell. 2004 Feb;15(2):563-74. doi: 10.1091/mbc.e03-06-0379. Epub 2003 Oct 31.

引用本文的文献

1
Distinct Responses of Cystic Fibrosis Epithelial Cells to SARS-CoV-2 and Influenza A Virus.
Am J Respir Cell Mol Biol. 2025 Mar;72(3):308-319. doi: 10.1165/rcmb.2024-0213OC.
2
Targeting ubiquitination machinery in cystic fibrosis: Where do we stand?
Cell Mol Life Sci. 2024 Jun 18;81(1):271. doi: 10.1007/s00018-024-05295-z.
4
Lhs1 dependent ERAD is determined by transmembrane domain context.
Biochem J. 2023 Sep 27;480(18):1459-1473. doi: 10.1042/BCJ20230075.
5
Yeast derlin Dfm1 employs a chaperone-like function to resolve misfolded membrane protein stress.
PLoS Biol. 2023 Jan 23;21(1):e3001950. doi: 10.1371/journal.pbio.3001950. eCollection 2023 Jan.
6
The cellular pathways that maintain the quality control and transport of diverse potassium channels.
Biochim Biophys Acta Gene Regul Mech. 2023 Mar;1866(1):194908. doi: 10.1016/j.bbagrm.2023.194908. Epub 2023 Jan 10.
7
Volleying plasma membrane proteins from birth to death: Role of J-domain proteins.
Front Mol Biosci. 2022 Dec 15;9:1072242. doi: 10.3389/fmolb.2022.1072242. eCollection 2022.
8
Hsp40s play distinct roles during the initial stages of apolipoprotein B biogenesis.
Mol Biol Cell. 2022 Feb 1;33(2):ar15. doi: 10.1091/mbc.E21-09-0436. Epub 2021 Dec 15.

本文引用的文献

1
CFTR expression and ER-associated degradation in yeast.
Methods Mol Med. 2002;70:257-65. doi: 10.1385/1-59259-187-6:257.
4
The 26S proteasome: a molecular machine designed for controlled proteolysis.
Annu Rev Biochem. 1999;68:1015-68. doi: 10.1146/annurev.biochem.68.1.1015.
5
HRD gene dependence of endoplasmic reticulum-associated degradation.
Mol Biol Cell. 2000 May;11(5):1697-708. doi: 10.1091/mbc.11.5.1697.
9
10
Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DeltaF508-CFTR.
Am J Physiol Cell Physiol. 2000 Feb;278(2):C259-67. doi: 10.1152/ajpcell.2000.278.2.C259.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验