Suppr超能文献

一种用于超声图像分割的自适应蛇模型:改进的截尾均值滤波器、斜坡积分和自适应加权参数。

An adaptive snake model for ultrasound image segmentation: modified trimmed mean filter, ramp integration and adaptive weighting parameters.

作者信息

Chen C M, Lu H H

机构信息

Institute of Biomedical Engineering, National Taiwan University, Taipei.

出版信息

Ultrason Imaging. 2000 Oct;22(4):214-36. doi: 10.1177/016173460002200403.

Abstract

The snake model is a widely-used approach to finding the boundary of the object of interest in an ultrasound image. However, due to the speckles, the weak edges and the tissue-related textures in an ultrasound image, conventional snake models usually cannot obtain the desired boundary satisfactorily. In this paper, we propose a new adaptive snake model for ultrasound image segmentation. The proposed snake model is composed of three major techniques, namely, the modified trimmed mean (MTM) filtering, ramp integration and adaptive weighting parameters. With the advantages of the mean and median filters, the MTM filter is employed to alleviate the speckle interference in the segmentation process. The weak edge enhancement by ramp integration attempts to capture the slowly varying edges, which are hard to capture by conventional snake models. The adaptive weighting parameter allows weighting of each energy term to change adaptively during the deformation process. The proposed snake model has been verified on the phantom and clinical ultrasound images. The experimental results showed that the proposed snake model achieves a reasonable performance with an initial contour placed 10 to 20 pixels away from the desired boundary. The mean minimal distances from the derived boundary to the desired boundary have been shown to be less than 3.5 (for CNR > or = 0.5) and 2.5 pixels, respectively, for the phantom and ultrasound images.

摘要

蛇模型是一种在超声图像中寻找感兴趣物体边界的广泛应用的方法。然而,由于超声图像中的斑点、弱边缘和与组织相关的纹理,传统的蛇模型通常不能令人满意地获得期望的边界。在本文中,我们提出了一种用于超声图像分割的新型自适应蛇模型。所提出的蛇模型由三项主要技术组成,即改进的截尾均值(MTM)滤波、斜坡积分和自适应加权参数。MTM滤波器利用均值滤波器和中值滤波器的优点,在分割过程中减轻斑点干扰。通过斜坡积分进行弱边缘增强试图捕捉传统蛇模型难以捕捉的缓慢变化的边缘。自适应加权参数允许在变形过程中每个能量项的权重自适应地变化。所提出的蛇模型已在体模和临床超声图像上得到验证。实验结果表明,所提出的蛇模型在初始轮廓放置在距期望边界10到20像素处时具有合理的性能。对于体模和超声图像,从导出边界到期望边界的平均最小距离分别显示小于3.5像素(对于CNR≥0.5)和2.5像素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验