Suppr超能文献

牛免疫缺陷病毒BIV Tat-TAR复合物的分子动力学与结合特异性分析

Molecular dynamics and binding specificity analysis of the bovine immunodeficiency virus BIV Tat-TAR complex.

作者信息

Reyes C M, Nifosì R, Frankel A D, Kollman P A

机构信息

Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143, USA.

出版信息

Biophys J. 2001 Jun;80(6):2833-42. doi: 10.1016/S0006-3495(01)76250-9.

Abstract

We have performed molecular dynamics (MD) simulations, with particle-mesh Ewald, explicit waters, and counterions, and binding specificity analyses using combined molecular mechanics and continuum solvent (MM-PBSA) on the bovine immunodeficiency virus (BIV) Tat peptide-TAR RNA complex. The solution structure for the complex was solved independently by Patel and co-workers and Puglisi and co-workers. We investigated the differences in both structures and trajectories, particularly in the formation of the U-A-U base triple, the dynamic flexibility of the Tat peptide, and the interactions at the binding interface. We observed a decrease in RMSD in comparing the final average RNA structures and initial RNA structures of both trajectories, which suggests the convergence of the RNA structures to a MD equilibrated RNA structure. We also calculated the relative binding of different Tat peptide mutants to TAR RNA and found qualitative agreement with experimental studies.

摘要

我们利用粒子网格埃瓦尔德方法、显式水分子和抗衡离子进行了分子动力学(MD)模拟,并使用联合分子力学和连续介质溶剂(MM-PBSA)对牛免疫缺陷病毒(BIV)Tat肽-TAR RNA复合物进行了结合特异性分析。该复合物的溶液结构由帕特尔及其同事以及普格利西及其同事分别独立解析。我们研究了两种结构和轨迹的差异,特别是U-A-U碱基三联体的形成、Tat肽的动态灵活性以及结合界面处的相互作用。在比较两条轨迹的最终平均RNA结构和初始RNA结构时,我们观察到均方根偏差(RMSD)减小,这表明RNA结构收敛到MD平衡的RNA结构。我们还计算了不同Tat肽突变体与TAR RNA的相对结合,并发现与实验研究定性一致。

相似文献

2
Flexibility of BIV TAR-Tat: models of peptide binding.
J Biomol Struct Dyn. 2002 Oct;20(2):243-51. doi: 10.1080/07391102.2002.10506840.
3
Binding of a cyclic BIV beta-Tat peptide with its TAR RNA construct.
Bioorg Med Chem Lett. 2001 Jan 8;11(1):43-6. doi: 10.1016/s0960-894x(00)00591-6.
4
Thermodynamics and solvation dynamics of BIV TAR RNA-Tat peptide interaction.
Mol Biosyst. 2013 Jan 27;9(1):88-98. doi: 10.1039/c2mb25357g. Epub 2012 Oct 31.
6
Altering the context of an RNA bulge switches the binding specificities of two viral Tat proteins.
Biochemistry. 1998 Jul 28;37(30):10808-14. doi: 10.1021/bi980382+.
7
Solution structure of a bovine immunodeficiency virus Tat-TAR peptide-RNA complex.
Science. 1995 Nov 17;270(5239):1200-3. doi: 10.1126/science.270.5239.1200.
9
Design of a cyclic peptide that targets a viral RNA.
J Am Chem Soc. 2003 Dec 24;125(51):15704-5. doi: 10.1021/ja036344h.
10
A single intermolecular contact mediates intramolecular stabilization of both RNA and protein.
Proc Natl Acad Sci U S A. 2005 May 10;102(19):6849-54. doi: 10.1073/pnas.0409282102. Epub 2005 Apr 27.

引用本文的文献

1
Structural and computational studies of HIV-1 RNA.
RNA Biol. 2024 Jan;21(1):1-32. doi: 10.1080/15476286.2023.2289709. Epub 2023 Dec 15.
2
Design, Synthesis, and Characterization of a Novel 2'-5'-Linked Amikacin-Binding Aptamer: An Experimental and MD Simulation Study.
ACS Chem Biol. 2022 Dec 16;17(12):3478-3488. doi: 10.1021/acschembio.2c00653. Epub 2022 Dec 1.
3
Role of salt-bridging interactions in recognition of viral RNA by arginine-rich peptides.
Biophys J. 2021 Nov 16;120(22):5060-5073. doi: 10.1016/j.bpj.2021.10.007. Epub 2021 Oct 26.
5
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.
Chem Rev. 2018 Apr 25;118(8):4177-4338. doi: 10.1021/acs.chemrev.7b00427. Epub 2018 Jan 3.
7
Molecular dynamics simulations of RNA: an in silico single molecule approach.
Biopolymers. 2007 Feb 5;85(2):169-84. doi: 10.1002/bip.20620.
8
Stereochemistry and position-dependent effects of carcinogens on TATA/TBP binding.
Biophys J. 2006 Mar 15;90(6):1865-77. doi: 10.1529/biophysj.105.074344. Epub 2005 Dec 30.
9
Loss of G-A base pairs is insufficient for achieving a large opening of U4 snRNA K-turn motif.
Nucleic Acids Res. 2005 Jun 13;33(10):3435-46. doi: 10.1093/nar/gki664. Print 2005.

本文引用的文献

1
Molecular dynamics studies of the HIV-1 TAR and its complex with argininamide.
Nucleic Acids Res. 2000 Dec 15;28(24):4944-55. doi: 10.1093/nar/28.24.4944.
2
Fitting peptides into the RNA world.
Curr Opin Struct Biol. 2000 Jun;10(3):332-40. doi: 10.1016/s0959-440x(00)00092-0.
4
Investigating the binding specificity of U1A-RNA by computational mutagenesis.
J Mol Biol. 2000 Jan 7;295(1):1-6. doi: 10.1006/jmbi.1999.3319.
5
Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7.
Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14330-5. doi: 10.1073/pnas.96.25.14330.
7
Simulations of the dynamics at an RNA-protein interface.
Nat Struct Biol. 1999 Jun;6(6):540-4. doi: 10.1038/9310.
8
Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA.
Arch Biochem Biophys. 1999 May 15;365(2):175-85. doi: 10.1006/abbi.1999.1206.
9
Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules.
Acta Crystallogr D Biol Crystallogr. 1998 Nov 1;54(Pt 6 Pt 1):1078-84. doi: 10.1107/s0907444998009378.
10
Continuum solvent studies of the stability of RNA hairpin loops and helices.
J Biomol Struct Dyn. 1998 Dec;16(3):671-82. doi: 10.1080/07391102.1998.10508279.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验