Hsieh Mark, Collins Elaine D, Blomquist Thomas, Lustig Brooke
Department of Chemistry, San Jose State University, CA 95192-0101, USA.
J Biomol Struct Dyn. 2002 Oct;20(2):243-51. doi: 10.1080/07391102.2002.10506840.
A new approach in determining local residue flexibility from base-amino acid contact frequencies is applied to the twelve million lattice chains modeling BIV Tat peptide binding to TAR RNA fragment. Many of the resulting key features in flexibility correspond to RMSD calculations derived from a set of five NMR derived structures (X. Ye, R. A. Kumar, and D. J. Patel, Protein Data Bank: Database of three-dimensional structures determined from NMR (1996)) and binding studies of mutants (L. Chen and A. D. Frankel, Proc. Natl. Acad. Sci. USA 92, 5077-5081 (1995)). The lattice and RMSD calculations facilitate the identification of peptide hinge regions that can best utilize the introduction of Gly or other flexible residues. This approach for identifying potential sites amenable to substitution of more flexible residues to enhance peptide binding to RNA targets could be a useful design tool.
一种根据碱基-氨基酸接触频率确定局部残基灵活性的新方法被应用于对1200万个模拟BIV Tat肽与TAR RNA片段结合的晶格链。在灵活性方面产生的许多关键特征与从一组五个核磁共振衍生结构(X. Ye、R. A. Kumar和D. J. Patel,蛋白质数据库:由核磁共振确定的三维结构数据库(1996年))以及突变体结合研究(L. Chen和A. D. Frankel,《美国国家科学院院刊》92,5077 - 5081(1995年))得出的均方根偏差计算结果相对应。晶格计算和均方根偏差计算有助于识别能够最佳利用引入甘氨酸或其他柔性残基的肽铰链区。这种识别适合替换更柔性残基以增强肽与RNA靶点结合的潜在位点的方法可能是一种有用的设计工具。