Suppr超能文献

用于测量绿色荧光蛋白标记蛋白单体 - 二聚体转变的活细胞内同源荧光共振能量转移显微镜技术。

Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins.

作者信息

Gautier I, Tramier M, Durieux C, Coppey J, Pansu R B, Nicolas J C, Kemnitz K, Coppey-Moisan M

机构信息

Institut Jacques Monod, Centre National de la Recherche Scientifique, Université P6/P7, 75251 Paris, France.

出版信息

Biophys J. 2001 Jun;80(6):3000-8. doi: 10.1016/S0006-3495(01)76265-0.

Abstract

Fluorescence anisotropy decay microscopy was used to determine, in individual living cells, the spatial monomer-dimer distribution of proteins, as exemplified by herpes simplex virus thymidine kinase (TK) fused to green fluorescent protein (GFP). Accordingly, the fluorescence anisotropy dynamics of two fusion proteins (TK27GFP and TK366GFP) was recorded in the confocal mode by ultra-sensitive time-correlated single-photon counting. This provided a measurement of the rotational time of these proteins, which, by comparing with GFP, allowed the determination of their oligomeric state in both the cytoplasm and the nucleus. It also revealed energy homo-transfer within aggregates that TK366GFP progressively formed. Using a symmetric dimer model, structural parameters were estimated; the mutual orientation of the transition dipoles of the two GFP chromophores, calculated from the residual anisotropy, was 44.6 +/- 1.6 degrees, and the upper intermolecular limit between the two fluorescent tags, calculated from the energy transfer rate, was 70 A. Acquisition of the fluorescence steady-state intensity, lifetime, and anisotropy decay in the same cells, at different times after transfection, indicated that TK366GFP was initially in a monomeric state and then formed dimers that grew into aggregates. Picosecond time-resolved fluorescence anisotropy microscopy opens a promising avenue for obtaining structural information on proteins in individual living cells, even when expression levels are very low.

摘要

荧光各向异性衰减显微镜用于在单个活细胞中确定蛋白质的空间单体 - 二聚体分布,以与绿色荧光蛋白(GFP)融合的单纯疱疹病毒胸苷激酶(TK)为例。相应地,通过超灵敏时间相关单光子计数在共聚焦模式下记录了两种融合蛋白(TK27GFP和TK366GFP)的荧光各向异性动力学。这提供了对这些蛋白质旋转时间的测量,通过与GFP比较,可以确定它们在细胞质和细胞核中的寡聚状态。它还揭示了TK366GFP逐渐形成的聚集体内的能量同转移。使用对称二聚体模型估计了结构参数;根据残余各向异性计算的两个GFP发色团跃迁偶极子的相互取向为44.6±1.6度,根据能量转移速率计算的两个荧光标签之间的分子间上限为70Å。在转染后不同时间在同一细胞中获取荧光稳态强度、寿命和各向异性衰减,表明TK366GFP最初处于单体状态,然后形成二聚体并生长成聚集体。皮秒时间分辨荧光各向异性显微镜为在单个活细胞中获取蛋白质的结构信息开辟了一条有前景的途径,即使表达水平非常低时也是如此。

相似文献

1
Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins.
Biophys J. 2001 Jun;80(6):3000-8. doi: 10.1016/S0006-3495(01)76265-0.
2
Picosecond-hetero-FRET microscopy to probe protein-protein interactions in live cells.
Biophys J. 2002 Dec;83(6):3570-7. doi: 10.1016/S0006-3495(02)75357-5.
3
Fluorescence anisotropy imaging microscopy for homo-FRET in living cells.
Methods Cell Biol. 2008;85:395-414. doi: 10.1016/S0091-679X(08)85017-0.
6
High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein.
Biophys Chem. 2007 May;127(3):155-64. doi: 10.1016/j.bpc.2007.01.008. Epub 2007 Feb 1.
8
Analysis of EGF receptor oligomerization by homo-FRET.
Methods Cell Biol. 2013;117:305-21. doi: 10.1016/B978-0-12-408143-7.00016-5.

引用本文的文献

4
Probing Oxidant Effects on Superoxide Dismutase 1 Oligomeric States in Live Cells Using Single-Molecule Fluorescence Anisotropy.
Chem Biomed Imaging. 2023 Mar 6;1(1):49-57. doi: 10.1021/cbmi.3c00002. eCollection 2023 Apr 24.
7
Time-Resolved Fluorescence Anisotropy and Molecular Dynamics Analysis of a Novel GFP Homo-FRET Dimer.
Biophys J. 2021 Jan 19;120(2):254-269. doi: 10.1016/j.bpj.2020.11.2275. Epub 2020 Dec 18.
8
Single-molecule microscopy for in-cell quantification of protein oligomeric stoichiometry.
Curr Opin Struct Biol. 2021 Feb;66:112-118. doi: 10.1016/j.sbi.2020.10.022. Epub 2020 Nov 23.
9
Spatiotemporal dynamics of 53BP1 dimer recruitment to a DNA double strand break.
Nat Commun. 2020 Nov 13;11(1):5776. doi: 10.1038/s41467-020-19504-3.
10
In vivo observation of peroxiredoxins oligomerization dynamics.
Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):18918-18920. doi: 10.1073/pnas.2012207117. Epub 2020 Jul 27.

本文引用的文献

1
Restrained torsional dynamics of nuclear DNA in living proliferative mammalian cells.
Biophys J. 2000 May;78(5):2614-27. doi: 10.1016/S0006-3495(00)76806-8.
3
Structural dynamics of green fluorescent protein alone and fused with a single chain Fv protein.
J Biol Chem. 2000 Jun 9;275(23):17556-60. doi: 10.1074/jbc.M001348200.
4
Photophysics and optical switching in green fluorescent protein mutants.
Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):2974-8. doi: 10.1073/pnas.97.7.2974.
5
A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo.
Nat Biotechnol. 2000 Mar;18(3):313-6. doi: 10.1038/73767.
6
One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins.
Biophys J. 2000 Mar;78(3):1589-98. doi: 10.1016/S0006-3495(00)76711-7.
7
9
Imaging Ca2+ concentration changes at the secretory vesicle surface with a recombinant targeted cameleon.
Curr Biol. 1999 Aug 26;9(16):915-8. doi: 10.1016/s0960-9822(99)80398-4.
10
Rapid protein-folding assay using green fluorescent protein.
Nat Biotechnol. 1999 Jul;17(7):691-5. doi: 10.1038/10904.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验