Suppr超能文献

新型 GFP 同型 FRET 二聚体的时间分辨荧光各向异性和分子动力学分析。

Time-Resolved Fluorescence Anisotropy and Molecular Dynamics Analysis of a Novel GFP Homo-FRET Dimer.

机构信息

Department of Physics, King's College London, London, United Kingdom.

Department of Physics, King's College London, London, United Kingdom.

出版信息

Biophys J. 2021 Jan 19;120(2):254-269. doi: 10.1016/j.bpj.2020.11.2275. Epub 2020 Dec 18.

Abstract

Förster resonance energy transfer (FRET) is a powerful tool to investigate the interaction between proteins in living cells. Fluorescence proteins, such as the green fluorescent protein (GFP) and its derivatives, are coexpressed in cells linked to proteins of interest. Time-resolved fluorescence anisotropy is a popular tool to study homo-FRET of fluorescent proteins as an indicator of dimerization, in which its signature consists of a very short component at the beginning of the anisotropy decay. In this work, we present an approach to study GFP homo-FRET via a combination of time-resolved fluorescence anisotropy, the stretched exponential decay model, and molecular dynamics simulations. We characterize a new, to our knowledge, FRET standard formed by two enhanced GFPs (eGFPs) and a flexible linker of 15 aminoacids (eGFP15eGFP) with this protocol, which is validated by using an eGFP monomer as a reference. An excellent agreement is found between the FRET efficiency calculated from the fit of the eGFP15eGFP fluorescence anisotropy decays with a stretched exponential decay model (〈E〉 = 0.25 ± 0.05) and those calculated from the molecular dynamics simulations (〈E〉 = 0.18 ± 0.14). The relative dipole orientation between the GFPs is best described by the orientation factors 〈κ〉 = 0.17 ± 0.16 and 〈|κ|〉 = 0.35 ± 0.20, contextualized within a static framework in which the linker hinders the free rotation of the fluorophores and excludes certain configurations. The combination of time- and polarization-resolved fluorescence spectroscopy with molecular dynamics simulations is shown to be a powerful tool for the study and interpretation of homo-FRET.

摘要

Förster 共振能量转移(FRET)是研究活细胞中蛋白质相互作用的有力工具。荧光蛋白,如绿色荧光蛋白(GFP)及其衍生物,与感兴趣的蛋白质在细胞中共同表达。时间分辨荧光各向异性是研究荧光蛋白同型 FRET 的常用工具,作为二聚化的指示剂,其特征在于各向异性衰减开始时存在非常短的分量。在这项工作中,我们提出了一种通过时间分辨荧光各向异性、扩展指数衰减模型和分子动力学模拟相结合来研究 GFP 同型 FRET 的方法。我们使用这种方案对一种新的、据我们所知的 FRET 标准进行了表征,该标准由两个增强型 GFP(eGFP)和一个由 15 个氨基酸组成的柔性连接体(eGFP15eGFP)组成,该方案通过使用 eGFP 单体作为参考进行了验证。发现 eGFP15eGFP 荧光各向异性衰减与扩展指数衰减模型拟合得到的 FRET 效率(〈E〉=0.25±0.05)与分子动力学模拟计算得到的 FRET 效率(〈E〉=0.18±0.14)之间非常吻合。GFP 之间的相对偶极取向最好用取向因子〈κ〉=0.17±0.16 和〈|κ|〉=0.35±0.20 来描述,这在一个静态框架内是有意义的,在该框架内,连接体阻碍了荧光团的自由旋转并排除了某些构型。时间和偏振分辨荧光光谱与分子动力学模拟的结合被证明是研究和解释同型 FRET 的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3444/7840444/de971cc15dc6/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验