Chen Z, Newcomb R, Forbes E, McKenzie J, Batterham P
CESAR -- Centre for Environmental Stress and Adaptation Research, Genetics Department, University of Melbourne, Parkville 3052, Australia.
Insect Biochem Mol Biol. 2001 Jun 22;31(8):805-16. doi: 10.1016/s0965-1748(00)00186-7.
Acetylcholinesterase (AChE), encoded by the Ace gene, is the primary target of organophosphorous (OP) and carbamate insecticides. Ace mutations have been identified in OP resistants strains of Drosophila melanogaster. However, in the Australian sheep blowfly, Lucilia cuprina, resistance in field and laboratory generated strains is determined by point mutations in the Rop-1 gene, which encodes a carboxylesterase, E3. To investigate the apparent bias for the Rop-1/E3 mechanism in the evolution of OP resistance in L. cuprina, we have cloned the Ace gene from this species and characterized its product. Southern hybridization indicates the existence of a single Ace gene in L. cuprina. The amino acid sequence of L. cuprina AChE shares 85.3% identity with D. melanogaster and 92.4% with Musca domestica AChE. Five point mutations in Ace associated with reduced sensitivity to OP insecticides have been previously detected in resistant strains of D. melanogaster. These residues are identical in susceptible strains of D. melanogaster and L. cuprina, although different codons are used. Each of the amino acid substitutions that confer OP resistance in D. melanogaster could also occur in L. cuprina by a single non-synonymous substitution. These data suggest that the resistance mechanism used in L. cuprina is determined by factors other than codon bias. The same point mutations, singly and in combination, were introduced into the Ace gene of L. cuprina by site-directed mutagenesis and the resulting AChE enzymes expressed using a baculovirus system to characterise their kinetic properties and interactions with OP insecticides. The K(m) of wild type AChE for acetylthiocholine (ASCh) is 23.13 microM and the point mutations change the affinity to the substrate. The turnover number of Lucilia AChE for ASCh was estimated to be 1.27x10(3) min(-1), similar to Drosophila or housefly AChE. The single amino acid replacements reduce the affinities of the AChE for OPs and give up to 8.7-fold OP insensitivity, while combined mutations give up to 35-fold insensitivity. However, other published studies indicate these same mutations yield higher levels of OP insensitivity in D. melanogaster and A. aegypti. The inhibition data indicate that the wild type form of AChE of L. cuprina is 12.4-fold less sensitive to OP inhibition than the susceptible form of E3, suggesting that the carboxylesterases may have a role in the protection of AChE via a sequestration mechanism. This provides a possible explanation for the bias towards the evolution of resistance via the Rop-1/E3 mechanism in L. cuprina.
乙酰胆碱酯酶(AChE)由Ace基因编码,是有机磷(OP)和氨基甲酸酯类杀虫剂的主要作用靶点。在黑腹果蝇的OP抗性品系中已鉴定出Ace基因突变。然而,在澳大利亚绵羊 blowfly(绿蝇 Lucilia cuprina)中,田间和实验室培育品系的抗性是由Rop - 1基因中的点突变决定的,该基因编码一种羧酸酯酶E3。为了研究在绿蝇对OP抗性进化过程中Rop - 1/E3机制的明显偏向性,我们从该物种中克隆了Ace基因并对其产物进行了表征。Southern杂交表明绿蝇中存在单个Ace基因。绿蝇AChE的氨基酸序列与黑腹果蝇的序列有85.3%的同一性,与家蝇AChE有92.4%的同一性。先前在黑腹果蝇的抗性品系中检测到Ace基因中的五个与对OP杀虫剂敏感性降低相关的点突变。这些残基在黑腹果蝇和绿蝇的敏感品系中是相同的,尽管使用的密码子不同。在黑腹果蝇中赋予OP抗性的每个氨基酸替换在绿蝇中也可能通过单个非同义替换发生。这些数据表明,绿蝇中使用的抗性机制是由密码子偏向性以外的因素决定的。通过定点诱变将相同的点突变单独或组合引入绿蝇的Ace基因,并使用杆状病毒系统表达产生的AChE酶,以表征其动力学特性以及与OP杀虫剂的相互作用。野生型AChE对乙酰硫代胆碱(ASCh)的K(m)为23.13 microM,点突变改变了对底物的亲和力。绿蝇AChE对ASCh的周转数估计为1.27x10(3) min(-1),与果蝇或家蝇AChE相似。单个氨基酸替换降低了AChE对OPs的亲和力,导致高达8.7倍的OP不敏感性,而组合突变导致高达35倍的不敏感性。然而,其他已发表的研究表明,这些相同的突变在黑腹果蝇和埃及伊蚊中产生更高水平的OP不敏感性。抑制数据表明,绿蝇AChE的野生型形式对OP抑制的敏感性比E3的敏感形式低12.4倍,这表明羧酸酯酶可能通过隔离机制在保护AChE方面发挥作用。这为绿蝇中通过Rop - 1/E3机制进化抗性的偏向性提供了一种可能的解释。