Kollum M, Cottin Y, Chan R C, Kim H S, Bhargava B, Vodovotz Y, Waksman R
Cardiovascular Research Institute, Washington, DC, USA.
Int J Radiat Oncol Biol Phys. 2001 Jun 1;50(2):495-501. doi: 10.1016/s0360-3016(01)01497-3.
To evaluate the late induction of apoptosis following intracoronary radiation (IR) and the effects of IR on inflammatory cells.
Porcine coronaries were injured by balloon overstretch followed by either 0 or 15 Gy of 192Ir prescribed to 2 mm from the center of the source. Swine were euthanized at 3, 7, and 14 days posttreatment, and arteries were stained for markers of smooth muscle cells (SMCs alpha-actin), T cells (CD3), macrophages, endothelial cells, and apoptotic nuclei (terminal uridine nick end labeling, TUNEL). Intimal area (IA) and IA corrected for medial fracture length (IA/FL) were quantified by digital image analysis, which was also used to quantify the distribution of immunostain-positive cells in the adventitia, media, and neointima, respectively.
IA/FL was significantly reduced following treatment with 15 Gy, in association with decreased SMC density. Following injury and IR, TUNEL- and CD3-positive cell density increased significantly, and density of macrophages was increased in the adventitia and neointima. Staining for endothelial cells revealed a delay of re-endothelialization after radiation treatment.
Increased T-cell infiltration at the medial tear following IR, perhaps due to incomplete re-endothelialization, may indicate incomplete healing. The elevated apoptosis of these infiltrating T cells may indicate a mechanism for the resolution of inflammation.