Biswas R, Kühne H, Brudvig G W, Gopalan V
Department of Biochemistry, Ohio State University, Columbus, OH 43210-1292, USA.
Sci Prog. 2001;84(Pt 1):45-67. doi: 10.3184/003685001783239050.
Electron paramagnetic resonance (EPR) spectroscopy is now part of the armory available to probe the structural aspects of proteins, nucleic acids and protein-nucleic acid complexes. Since the mobility of a spin label covalently attached to a macromolecule is influenced by its microenvironment, analysis of the EPR spectra of site-specifically incorporated spin labels (probes) provides a powerful tool for investigating structure-function correlates in biological macromolecules. This technique has become readily amenable to address various problems in biology in large measure due to the advent of techniques like site-directed mutagenesis, which enables site-specific substitution of cysteine residues in proteins, and the commercial availability of thiol-specific spin-labeling reagents (Figure 1). In addition to the underlying principle and the experimental strategy, several recent applications are discussed in this review.
电子顺磁共振(EPR)光谱现已成为用于探究蛋白质、核酸及蛋白质 - 核酸复合物结构方面的手段之一。由于共价连接到大分子上的自旋标记物的流动性受其微环境影响,对位点特异性掺入的自旋标记物(探针)的EPR光谱进行分析,为研究生物大分子中的结构 - 功能关系提供了一个强大的工具。由于定点诱变等技术的出现,该技术在很大程度上已易于解决生物学中的各种问题,定点诱变技术能够实现蛋白质中半胱氨酸残基的位点特异性替换,同时巯基特异性自旋标记试剂也已商业化可得(图1)。除了基本原理和实验策略外,本综述还讨论了一些近期的应用。