Ishara Silva K, Jagannathan Bharat, Golbeck John H, Lakshmi K V
Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180; The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180.
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802.
Biochim Biophys Acta. 2016 May;1857(5):548-556. doi: 10.1016/j.bbabio.2015.08.009. Epub 2015 Sep 1.
Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
定点自旋标记电子顺磁共振(SDSL EPR)光谱学是一种强大的工具,可用于确定生物大分子特定位点的溶剂可及性、侧链动力学和自旋间距离。这些信息为天然和设计的蛋白质及蛋白质复合物的结构和动力学提供了重要见解。在此,我们讨论SDSL EPR光谱学在探测光合反应中心(RC)如光系统I(PSI)和细菌反应中心(bRC)中的电荷转移辅因子方面的应用。光合RC是大型多亚基蛋白质(分子量≥300 kDa),在光合作用中进行光驱动的电荷转移反应。这些反应由处于其氧化态之一时具有顺磁性的辅因子进行。这使得RC不适用于传统的核磁共振光谱学研究。然而,RC中天然顺磁性中心的存在以及共价连接定点自旋标记的能力使其非常适合应用SDSL EPR光谱学。顺磁性中心可作为构象变化、亚基组装动力学以及辅因子和肽亚基相对运动的探针。在本综述中,我们描述了SDSL EPR光谱学的新应用,以阐明局部结构和动力学对光合RC电子转移辅因子的影响。由于SDSL EPR光谱学特别适合提供关于蛋白质运动的动态信息,因此它在设计的电子转移蛋白质和蛋白质网络的工程和分析中是一种特别有用的方法。本文是由罗纳德·L·科德和J.L.罗斯·安德森编辑的名为“生物能量学的生物设计——电子转移辅因子、蛋白质和蛋白质网络的设计与工程”的特刊的一部分。