Agapie A
Laboratory of Computational Intelligence, Institute for Microtechnologies, Bucharest, P.O. Box 38-160, 72225, Romania.
Evol Comput. 2001 Summer;9(2):127-46. doi: 10.1162/106365601750190370.
Adaptive evolutionary algorithms require a more sophisticated modeling than their static-parameter counterparts. Taking into account the current population is not enough when implementing parameter-adaptation rules based on success rates (evolution strategies) or on premature convergence (genetic algorithms). Instead of Markov chains, we use random systems with complete connections - accounting for a complete, rather than recent, history of the algorithm's evolution. Under the new paradigm, we analyze the convergence of several mutation-adaptive algorithms: a binary genetic algorithm, the 1/5 success rule evolution strategy, a continuous, respectively a dynamic (1+1) evolutionary algorithm.
自适应进化算法比其静态参数对应算法需要更复杂的建模。在基于成功率(进化策略)或早熟收敛(遗传算法)实现参数自适应规则时,仅考虑当前种群是不够的。我们使用具有完全连接的随机系统,而不是马尔可夫链——考虑算法进化的完整历史,而非近期历史。在新范式下,我们分析了几种变异自适应算法的收敛性:一种二进制遗传算法、1/5成功规则进化策略、一种连续的以及一种动态的(1+1)进化算法。