Deb K, Beyer H G
Kanpur Genetic Algorithms Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, PIN 208 016, India.
Evol Comput. 2001 Summer;9(2):197-221. doi: 10.1162/106365601750190406.
Self-adaptation is an essential feature of natural evolution. However, in the context of function optimization, self-adaptation features of evolutionary search algorithms have been explored mainly with evolution strategy (ES) and evolutionary programming (EP). In this paper, we demonstrate the self-adaptive feature of real-parameter genetic algorithms (GAs) using a simulated binary crossover (SBX) operator and without any mutation operator. The connection between the working of self-adaptive ESs and real-parameter GAs with the SBX operator is also discussed. Thereafter, the self-adaptive behavior of real-parameter GAs is demonstrated on a number of test problems commonly used in the ES literature. The remarkable similarity in the working principle of real-parameter GAs and self-adaptive ESs shown in this study suggests the need for emphasizing further studies on self-adaptive GAs.
自适应是自然进化的一个基本特征。然而,在函数优化的背景下,进化搜索算法的自适应特征主要是通过进化策略(ES)和进化规划(EP)来探索的。在本文中,我们使用模拟二进制交叉(SBX)算子且不使用任何变异算子来证明实参数遗传算法(GA)的自适应特征。还讨论了自适应进化策略的工作原理与带有SBX算子的实参数遗传算法之间的联系。此后,在进化策略文献中常用的一些测试问题上展示了实参数遗传算法的自适应行为。本研究中实参数遗传算法和自适应进化策略在工作原理上的显著相似性表明有必要进一步加强对自适应遗传算法的研究。