Rodríguez-Barrios F, Pérez C, Lobatón E, Velázquez S, Chamorro C, San-Félix A, Pérez-Pérez M J, Camarasa M J, Pelemans H, Balzarini J, Gago F
Departamento de Farmacología, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
J Med Chem. 2001 Jun 7;44(12):1853-65. doi: 10.1021/jm001095i.
A binding site for TSAO-m(3)T at the interface between the p66 and p51 subunits of HIV-1 reverse transcriptase (RT) and distinct from that of "classical" HIV-1 non-nucleoside inhibitors is proposed. The feasibility of the binding mode was assessed by carrying out nanosecond molecular dynamics simulations for the complexes of TSAO-m(3)T with reduced models of both the wild-type enzyme and a more sensitive R172A mutant. The molecular model is in agreement with a previous proposal, with known structure-activity and mutagenesis data for this unique class of inhibitors, and also with recent biochemical evidence indicating that TSAO analogues can affect enzyme dimerization. The relative importance of residues involved in dimer formation and TSAO-RT complex stabilization was assessed by a combination of surface area accessibility, molecular mechanics, and continuum electrostatics calculations. A structure-based modification introduced into the lead compound yielded a new derivative with improved antiviral activity.
有人提出,TSAO-m(3)T在HIV-1逆转录酶(RT)的p66和p51亚基之间的界面处存在一个结合位点,且与“经典”HIV-1非核苷抑制剂的结合位点不同。通过对TSAO-m(3)T与野生型酶和更敏感的R172A突变体的简化模型形成的复合物进行纳秒级分子动力学模拟,评估了这种结合模式的可行性。该分子模型与之前的一项提议一致,与这类独特抑制剂的已知构效关系和诱变数据相符,也与最近表明TSAO类似物可影响酶二聚化的生化证据一致。通过结合表面积可及性、分子力学和连续介质静电计算,评估了参与二聚体形成和TSAO-RT复合物稳定化的残基的相对重要性。对先导化合物进行的基于结构的修饰产生了一种具有改善抗病毒活性的新衍生物。