Kuhn B, Jacobsen W, Christians U, Benet L Z, Kollman P A
Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143-0446, USA.
J Med Chem. 2001 Jun 7;44(12):2027-34. doi: 10.1021/jm010079y.
A combination of quantum chemical calculations and molecular simulations (DOCKing and molecular dynamics) is used to investigate the metabolism of sirolimus (rapamycin) and its derivative everolimus (SDZ-RAD) by cytochrome P450 3A4. Both molecules are drugs with high immunosuppressive activity. Our calculations yield qualitative predictions of the regiospecificities of the hydroxylations and O-dealkylations occurring in these two substrates which are in good agreement with recent experimental results. An analysis of the modeled enzyme-substrate interactions allows us to rationalize the reduced metabolic activity of the larger substrate everolimus compared to sirolimus. Moreover, our simulations suggest that hydrogen donor functionalities close to the metabolic site are important for anchoring the substrate at the active center of the enzyme. In particular, we predict that replacing one hydroxyl group by a fluorine atom should considerably suppress the major metabolic reaction in sirolimus, 39-O-demethylation.
采用量子化学计算和分子模拟(对接和分子动力学)相结合的方法,研究西罗莫司(雷帕霉素)及其衍生物依维莫司(SDZ-RAD)被细胞色素P450 3A4代谢的情况。这两种分子都是具有高免疫抑制活性的药物。我们的计算对这两种底物中发生的羟基化和O-脱烷基化的区域特异性进行了定性预测,与最近的实验结果高度吻合。对模拟的酶-底物相互作用的分析使我们能够解释较大的底物依维莫司与西罗莫司相比代谢活性降低的原因。此外,我们的模拟表明,靠近代谢位点的氢供体官能团对于将底物锚定在酶的活性中心很重要。特别是,我们预测用氟原子取代一个羟基应该会显著抑制西罗莫司中的主要代谢反应,即39-O-去甲基化。