Goddon S, Fujino Y, Hromi J M, Kacmarek R M
Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
Anesthesiology. 2001 May;94(5):862-9. doi: 10.1097/00000542-200105000-00026.
A number of groups have recommended setting positive end-expiratory pressure during conventional mechanical ventilation in adults at 2 cm H2O above the lower corner pressure (P(CL)) of the inspiratory pressure-volume (P-V) curve of the respiratory system. No equivalent recommendations for the setting of the mean airway pressure (Paw) during high-frequency oscillation (HFO) exist. The authors questioned if the Paw resulting in the best oxygenation without hemodynamic compromise during HFO is related to the static P-V curve in a large animal model of acute respiratory distress syndrome.
Saline lung lavage was performed in seven sheep (28+/-5 kg, mean +/- SD) until the arterial oxygen partial pressure/fraction of inspired oxygen ratio decreased to 85+/-27 mmHg at a positive end-expiratory pressure of 5 cm H2O (initial injury). The PCL (20+/-1 cm H2O) on the inflation limb and the point of maximum curvature change (PMC; 26+/-1 cm H2O) on the deflation limb of the static P-V curve were determined. The sheep were subjected to four 1-h cycles of HFO at different levels of Paw (P(CL) + 2, + 6, + 10, + 14 cm H2O), applied in random order. Each cycle was preceded by a recruitment maneuver at a sustained Paw of 50 cm H2O for 60 s.
High-frequency oscillation with a Paw of 6 cm H2O above P(CL) (P(CL) + 6) resulted in a significant improvement in oxygenation (P < 0.01 vs. initial injury). No further improvement in oxygenation was observed with higher Paw, but cardiac output decreased, pulmonary vascular resistance increased, and oxygen delivery decreased at Paw greater than P(CL) + 6. The PMC on the deflation limb of the P-V curve was equal to the P(CL) + 6 (r = 0.77, P < 0.05).
In this model of acute respiratory distress syndrome, optimal Paw during HFO is equal to P(CL) + 6, which correlates with the PMC.
多个研究小组建议,在成人常规机械通气期间,呼气末正压应设置在呼吸系统吸气压力-容积(P-V)曲线下拐点压力(P(CL))以上2 cm H₂O处。对于高频振荡(HFO)期间平均气道压(Paw)的设置,尚无等效建议。作者质疑,在急性呼吸窘迫综合征的大型动物模型中,HFO期间在不影响血流动力学的情况下实现最佳氧合的Paw是否与静态P-V曲线有关。
对7只绵羊(28±5 kg,平均±标准差)进行肺盐水灌洗,直到在呼气末正压5 cm H₂O时动脉血氧分压/吸入氧分数比降至85±27 mmHg(初始损伤)。确定静态P-V曲线充气支上的P(CL)(20±1 cm H₂O)和放气支上的最大曲率变化点(PMC;26±1 cm H₂O)。绵羊以随机顺序接受四个1小时的HFO周期,Paw设置为不同水平(P(CL)+2、+6、+10、+14 cm H₂O)。每个周期之前,先在持续Paw为50 cm H₂O的情况下进行60秒的肺复张操作。
Paw比P(CL)高6 cm H₂O(P(CL)+6)的高频振荡使氧合显著改善(与初始损伤相比,P<0.01)。更高的Paw未观察到氧合进一步改善,但当Paw大于P(CL)+6时,心输出量下降,肺血管阻力增加,氧输送减少。P-V曲线放气支上的PMC等于P(CL)+6(r=0.77,P<0.05)。
在这个急性呼吸窘迫综合征模型中,HFO期间的最佳Paw等于P(CL)+6,这与PMC相关。