Rau H K, Snigula H, Struck A, Robert B, Scheer H, Haehnel W
Institut für Biologie II/Biochemie, Albert-Ludwigs-Universität Freiburg, Germany.
Eur J Biochem. 2001 Jun;268(11):3284-95. doi: 10.1046/j.1432-1327.2001.02231.x.
A chemoselective method is described for coupling chlorophyll derivatives with an aldehyde group to synthetic peptides or proteins modified with an aminoxyacetyl group at the epsilon-amino group of a lysine residue. Three template-assembled antiparallel four-helix bundles were synthesized for the ligation of one or two chlorophylls. This was achieved by coupling unprotected peptides to cysteine residues of a cyclic decapeptide by thioether formation. The amphiphilic helices were designed to form a hydrophobic pocket for the chlorophyll derivatives. Chlorophyll derivatives Zn-methyl-pheophorbide b and Zn-methyl-pyropheophorbide d were used. The aldehyde group of these chlorophyll derivatives was ligated to the modified lysine group to form an oxime bond. The peptide-chlorophyll conjugates were characterized by electrospray mass spectrometry, analytical HPLC, and UV/visible spectroscopy. Two four-helix bundle chlorophyll conjugates were further characterized by size-exclusion chromatography, circular dichroism, and resonance Raman spectroscopy.