Department Biologie I, Ludwig-Maximilians-Universität München, Botany, D-82152 Planegg-Martinsried, Germany.
Proteins. 2011 Feb;79(2):463-76. doi: 10.1002/prot.22895.
The cyclic tetrapyrroles, viz. chlorophylls (Chl), their bacterial analogs bacteriochlorophylls, and hemes are ubiquitous cofactors of biological catalysis that are involved in a multitude of reactions. One systematic approach for understanding how Nature achieves functional diversity with only this handful of cofactors is by designing de novo simple and robust protein scaffolds with heme and/or (bacterio)chlorophyll [(B)Chls]-binding sites. This strategy is currently mostly implemented for heme-binding proteins. To gain more insight into the factors that determine heme-/(B)Chl-binding selectivity, we explored the geometric parameters of (B)Chl-binding sites in a nonredundant subset of natural (B)Chl protein structures. Comparing our analysis to the study of a nonredundant database of heme-binding helical histidines by Negron et al. (Proteins 2009;74:400-416), we found a preference for the m-rotamer in (B)Chl-binding helical histidines, in contrast to the preferred t-rotamer in heme-binding helical histidines. This may be used for the design of specific heme- or (B)Chl-binding sites in water-soluble helical bundles, because the rotamer type defines the positioning of the bound cofactor with respect to the helix interface and thus the protein-binding site. Consensus sequences for (B)Chl binding were identified by combining a computational and database-derived approach and shown to be significantly different from the consensus sequences recommended by Negron et al. (Proteins 2009;74:400-416) for heme-binding helical proteins. The insights gained in this work on helix- (B)Chls-binding pockets provide useful guidelines for the construction of reasonable (B)Chl-binding protein templates that can be optimized by computational tools.
环四吡咯类化合物,即叶绿素(Chl)、其细菌类似物细菌叶绿素和血红素,是广泛存在的生物催化辅因子,参与多种反应。理解自然界如何仅用这少数几种辅因子实现功能多样性的一种系统方法是设计具有血红素和/或(细菌)叶绿素[(B)Chl]结合位点的新型简单而稳健的蛋白质支架。目前,该策略主要应用于血红素结合蛋白。为了更深入地了解决定血红素/(B)Chl 结合选择性的因素,我们探索了非冗余天然(B)Chl 蛋白结构子集中(B)Chl 结合位点的几何参数。将我们的分析与 Negron 等人(Proteins 2009;74:400-416)对非冗余血红素结合螺旋组氨酸数据库的研究进行比较,我们发现(B)Chl 结合螺旋组氨酸中 m-构象的偏好,与血红素结合螺旋组氨酸中首选的 t-构象形成对比。这可用于在水溶性螺旋束中设计特定的血红素或(B)Chl 结合位点,因为构象类型定义了结合辅因子相对于螺旋界面的位置,从而定义了蛋白质结合位点。通过结合计算和数据库衍生方法确定了(B)Chl 结合的共识序列,并表明其与 Negron 等人(Proteins 2009;74:400-416)推荐的血红素结合螺旋蛋白的共识序列有显著差异。这项工作对螺旋-(B)Chls 结合口袋的研究为构建合理的(B)Chl 结合蛋白模板提供了有用的指导方针,这些模板可以通过计算工具进行优化。