Suppr超能文献

Erythrocytes: Better Tolerance of Iron Polymaltose Complex Compared with Ferrous Sulphate in the Treatment of Anaemia.

作者信息

Jacobs PETER, Wood LUCILLE, Bird ARTHUR R.

机构信息

The Department of Haematology and The Bone Marrow Transplant Unit, Constantiaberg Medi-Clinic, Burnham Road, Plumstead 7800, Cape Town, South Africa.

出版信息

Hematology. 2000;5(1):77-83. doi: 10.1080/10245332.2000.11746490.

Abstract

BackgroundAbsolute iron deficiency, irrespective of aetiology, remains a major and worldwide cause of morbidity. After correction of the causative lesion, reconstitution of haemoglobin level and body iron stores is traditionally achieved with oral administration of ferrous salts. The latter have significant gastrointestinal tract side-effects that, in the short-term, may impair compliance. With protracted administration these products can cause lipid peroxidation which, in turn, may accelerate atherogenesis. An alternative formulation is an iron polymaltose complex where animal data supported a promoting effect of glycerophosphate. Setting and Trial Design This was a single-centre, open, randomised, multidose four treatment parallel group study. A standard dose of ferric polymaltose complex with two differing levels of glycerophosphate was compared with an equivalent amount of iron supplied as ferrous sulphate in anaemic volunteer blood donors. The endpoints were rate of haemoglobin rise and re-expansion of body iron stores reflected in blood ferritin concentration, as well as percentage saturation of transferrin. Secondary observations were changes in the proportion of hypochromic red cells during the course of treatment, erythropoietin levels and tolerability of the two formulations. Results Outcome in the rat model suggested that the utilisation of iron from polymaltose might be enhanced by glycerophosphate. However, in donors this difference was not evident and, accordingly, the data from the three polymaltose groups combined and compared to those receiving ferrous sulphate. The rate at which haemoglobin level improved, red cell indices returned to normal, and the number of hypochromic and microcytic red cells fell was not significantly different between the groups. Similarly the serum iron, percentage saturation of transferrin and red cell ferritin were comparable. In contrast the serum ferritin levels were higher for those receiving ferrous sulphate. Additionally, side-effects were significantly more frequently encountered with the latter preparation. Conclusion These data demonstrate that the addition of glycerophosphate, observed to be beneficial in rats, did not occur in humans. Secondly, in the blood donors, equivalent amounts of iron provided as the polymaltose, with or without glycerophosphate or ferrous sulphate, corrected haemoglobin concentration and morphologically abnormal erythropoiesis at comparable rates. Similarly iron stores are replenished to an equivalent extent as seen in the matching percentage saturation of transferrin and red cell ferritin levels. Interestingly, there is a discrepancy in the serum ferritin which is higher with the salt and this may reflect oxidative stress. Thirdly, corresponding efficacy can be achieved with better patient tolerance for the complex. Finally it is postulated that the iron polymaltose complex formulation more closely approximates the way in which enterocytes handle dietary iron and thus physiologic regulatory mechanisms would be expected to reciprocally slow down absorption as stores expand. Logically, therefore and, if confirmed, the latter finding suggests that this formulation may have a potential role in longer-term supplementation programmes.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验