Vergauwen B, Pauwels F, Jacquemotte F, Meyer T E, Cusanovich M A, Bartsch R G, Van Beeumen J J
Laboratory of Protein Biochemistry and Protein Engineering, Gent University, 9000 Gent, Belgium.
J Biol Chem. 2001 Jun 15;276(24):20890-7. doi: 10.1074/jbc.M102026200. Epub 2001 Apr 3.
Among the Chromatiaceae, the glutathione derivative gamma-l-glutamyl-l-cysteinylglycine amide, or glutathione amide, was reported to be present in facultative aerobic as well as in strictly anaerobic species. The gene (garB) encoding the central enzyme in glutathione amide cycling, glutathione amide reductase (GAR), has been isolated from Chromatium gracile, and its genomic organization has been examined. The garB gene is immediately preceded by an open reading frame encoding a novel 27.5-kDa chimeric enzyme composed of one N-terminal peroxiredoxin-like domain followed by a glutaredoxin-like C terminus. The 27.5-kDa enzyme was established in vitro to be a glutathione amide-dependent peroxidase, being the first example of a prokaryotic low molecular mass thiol-dependent peroxidase. Amino acid sequence alignment of GAR with the functionally homologous glutathione and trypanothione reductases emphasizes the conservation of the catalytically important redox-active disulfide and of regions involved in binding the FAD prosthetic group and the substrates glutathione amide disulfide and NADH. By establishing Michaelis constants of 97 and 13.2 microm for glutathione amide disulfide and NADH, respectively (in contrast to K(m) values of 6.9 mm for glutathione disulfide and 1.98 mm for NADPH), the exclusive substrate specificities of GAR have been documented. Specificity for the amidated disulfide cofactor partly can be explained by the substitution of Arg-37, shown by x-ray crystallographic data of the human glutathione reductase to hydrogen-bond one of the glutathione glycyl carboxylates, by the negatively charged Glu-21. On the other hand, the preference for the unusual electron donor, to some extent, has to rely on the substitution of the basic residues Arg-218, His-219, and Arg-224, which have been shown to interact in the human enzyme with the NADPH 2'-phosphate group, by Leu-197, Glu-198, and Phe-203. We suggest GAR to be the newest member of the class I flavoprotein disulfide reductase family of oxidoreductases.
在着色菌科中,据报道谷胱甘肽衍生物γ-L-谷氨酰-L-半胱氨酰甘氨酸酰胺,即谷胱甘肽酰胺,存在于兼性需氧菌以及严格厌氧菌中。编码谷胱甘肽酰胺循环中的核心酶谷胱甘肽酰胺还原酶(GAR)的基因(garB)已从纤细色杆菌中分离出来,并对其基因组结构进行了研究。garB基因紧挨着一个开放阅读框,该开放阅读框编码一种新型的27.5 kDa嵌合酶,其N端为一个过氧化物酶体增殖物激活受体样结构域,接着是一个谷氧还蛋白样C端。体外实验证实,这种27.5 kDa的酶是一种依赖谷胱甘肽酰胺的过氧化物酶,是原核低分子量硫醇依赖性过氧化物酶的首个实例。GAR与功能同源的谷胱甘肽还原酶和锥虫硫醇还原酶的氨基酸序列比对,突出了催化重要的氧化还原活性二硫键以及与结合FAD辅基、底物谷胱甘肽酰胺二硫化物和NADH相关区域的保守性。通过分别测定谷胱甘肽酰胺二硫化物和NADH的米氏常数为97和13.2 μmol(相比之下,谷胱甘肽二硫化物的K(m)值为6.9 mmol,NADPH的K(m)值为1.98 mmol),证明了GAR具有独特的底物特异性。对酰胺化二硫键辅因子的特异性部分可以通过以下情况来解释:人类谷胱甘肽还原酶的X射线晶体学数据显示,Arg-37通过氢键与谷胱甘肽的一个甘氨酰羧酸盐结合,而在GAR中被带负电荷的Glu-21取代。另一方面,对这种不寻常电子供体的偏好,在一定程度上必须依赖于碱性残基Arg-218、His-219和Arg-224的取代,在人类酶中这些残基与NADPH的2'-磷酸基团相互作用,而在GAR中被Leu-197、Glu-198和Phe-203取代。我们认为GAR是氧化还原酶中I类黄素蛋白二硫键还原酶家族的最新成员。