Suppr超能文献

大肠杆菌中回文序列刺激缺失的两种机制的证据:单链退火和复制滑动错配。

Evidence for two mechanisms of palindrome-stimulated deletion in Escherichia coli: single-strand annealing and replication slipped mispairing.

作者信息

Bzymek M, Lovett S T

机构信息

Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-0110, USA.

出版信息

Genetics. 2001 Jun;158(2):527-40. doi: 10.1093/genetics/158.2.527.

Abstract

Spontaneous deletion mutations often occur at short direct repeats that flank inverted repeat sequences. Inverted repeats may initiate genetic rearrangements by formation of hairpin secondary structures that block DNA polymerases or are processed by structure-specific endonucleases. We have investigated the ability of inverted repeat sequences to stimulate deletion of flanking direct repeats in Escherichia coli. Propensity for cruciform extrusion in duplex DNA correlated with stimulation of flanking deletion, which was partially sbcD dependent. We propose two mechanisms for palindrome-stimulated deletion, SbcCD dependent and SbcCD independent. The SbcCD-dependent mechanism is initiated by SbcCD cleavage of cruciforms in duplex DNA followed by RecA-independent single-strand annealing at the flanking direct repeats, generating a deletion. Analysis of deletion endpoints is consistent with this model. We propose that the SbcCD-independent pathway involves replication slipped mispairing, evoked from stalling at hairpin structures formed on the single-stranded lagging-strand template. The skew of SbcCD-independent deletion endpoints with respect to the direction of replication supports this hypothesis. Surprisingly, even in the absence of palindromes, SbcD affected the location of deletion endpoints, suggesting that SbcCD-mediated strand processing may also accompany deletion unassociated with secondary structures.

摘要

自发缺失突变通常发生在位于反向重复序列两侧的短正向重复序列处。反向重复序列可能通过形成发夹二级结构来引发基因重排,这些发夹结构会阻碍DNA聚合酶,或者被结构特异性核酸内切酶处理。我们研究了反向重复序列刺激大肠杆菌中侧翼正向重复序列缺失的能力。双链DNA中十字形突出的倾向与侧翼缺失的刺激相关,这部分依赖于sbcD。我们提出了两种由回文刺激缺失的机制,一种依赖SbcCD,另一种不依赖SbcCD。依赖SbcCD的机制由SbcCD切割双链DNA中的十字形结构引发,随后在侧翼正向重复序列处进行不依赖RecA的单链退火,从而产生缺失。对缺失端点的分析与该模型一致。我们提出不依赖SbcCD的途径涉及复制滑动错配,这是由单链滞后链模板上形成的发夹结构导致的停滞引发的。不依赖SbcCD的缺失端点相对于复制方向的偏差支持了这一假设。令人惊讶的是,即使在没有回文序列的情况下,SbcD也会影响缺失端点的位置,这表明SbcCD介导的链加工也可能伴随与二级结构无关的缺失。

相似文献

2
The roles of mutS, sbcCD and recA in the propagation of TGG repeats in Escherichia coli.
Nucleic Acids Res. 2000 Aug 15;28(16):3178-84. doi: 10.1093/nar/28.16.3178.
4
E. coli SbcCD and RecA control chromosomal rearrangement induced by an interrupted palindrome.
Mol Cell. 2010 Jul 9;39(1):59-70. doi: 10.1016/j.molcel.2010.06.011.
6
A perfect palindrome in the Escherichia coli chromosome forms DNA hairpins on both leading- and lagging-strands.
Nucleic Acids Res. 2014 Dec 1;42(21):13206-13. doi: 10.1093/nar/gku1136. Epub 2014 Nov 11.
7
SbcCD causes a double-strand break at a DNA palindrome in the Escherichia coli chromosome.
Mol Cell. 2008 Mar 14;29(5):644-51. doi: 10.1016/j.molcel.2007.12.020.
8
Instability of repetitive DNA sequences: the role of replication in multiple mechanisms.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8319-25. doi: 10.1073/pnas.111008398.
10
Roles of ExoI and SbcCD nucleases in "reckless" DNA degradation in recA mutants of Escherichia coli.
J Bacteriol. 2009 Mar;191(5):1677-87. doi: 10.1128/JB.01877-07. Epub 2008 Dec 12.

引用本文的文献

3
Prevalent role of homologous recombination in the repair of specific double-strand breaks in .
Front Microbiol. 2024 Feb 28;15:1333194. doi: 10.3389/fmicb.2024.1333194. eCollection 2024.
4
5
RecF protein targeting to post-replication (daughter strand) gaps II: RecF interaction with replisomes.
Nucleic Acids Res. 2023 Jun 23;51(11):5714-5742. doi: 10.1093/nar/gkad310.
6
Unbridled Integrons: A Matter of Host Factors.
Cells. 2022 Mar 8;11(6):925. doi: 10.3390/cells11060925.
7
Protein innovation through template switching in the Saccharomyces cerevisiae lineage.
Sci Rep. 2021 Nov 19;11(1):22558. doi: 10.1038/s41598-021-01736-y.
8
RecA-independent recombination: Dependence on the Escherichia coli RarA protein.
Mol Microbiol. 2021 Jun;115(6):1122-1137. doi: 10.1111/mmi.14655. Epub 2020 Dec 19.
9
Genetic Engineering by DNA Recombineering.
Curr Protoc Chem Biol. 2019 Sep;11(3):e70. doi: 10.1002/cpch.70.
10
Emergence of Oxacillin Resistance in Stealth Methicillin-Resistant Due to Sequence Instability.
Antimicrob Agents Chemother. 2019 Jul 25;63(8). doi: 10.1128/AAC.00558-19. Print 2019 Aug.

本文引用的文献

1
A novel mutational hotspot in a natural quasipalindrome in Escherichia coli.
J Mol Biol. 2000 Sep 22;302(3):553-64. doi: 10.1006/jmbi.2000.4088.
2
Double-strand break repair in tandem repeats during bacteriophage T4 infection.
Genetics. 2000 Aug;155(4):1493-504. doi: 10.1093/genetics/155.4.1493.
3
Palindromes as substrates for multiple pathways of recombination in Escherichia coli.
Genetics. 2000 Feb;154(2):513-22. doi: 10.1093/genetics/154.2.513.
4
Mutational analysis of the RecJ exonuclease of Escherichia coli: identification of phosphoesterase motifs.
J Bacteriol. 1999 Oct;181(19):6098-102. doi: 10.1128/JB.181.19.6098-6102.1999.
5
6
Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 1999 Jun;63(2):349-404. doi: 10.1128/MMBR.63.2.349-404.1999.
7
DNA cleavage and degradation by the SbcCD protein complex from Escherichia coli.
Nucleic Acids Res. 1999 Feb 15;27(4):1039-46. doi: 10.1093/nar/27.4.1039.
8
Slipped misalignment mechanisms of deletion formation: in vivo susceptibility to nucleases.
J Bacteriol. 1999 Jan;181(2):477-82. doi: 10.1128/JB.181.2.477-482.1999.
10
The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks.
Mol Cell. 1998 Jun;1(7):969-79. doi: 10.1016/s1097-2765(00)80097-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验