Suppr超能文献

罕见变异是否与复杂疾病的易感性有关?

Are rare variants responsible for susceptibility to complex diseases?

作者信息

Pritchard J K

机构信息

Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1-3TG, United Kingdom.

出版信息

Am J Hum Genet. 2001 Jul;69(1):124-37. doi: 10.1086/321272. Epub 2001 Jun 12.

Abstract

Little is known about the nature of genetic variation underlying complex diseases in humans. One popular view proposes that mapping efforts should focus on identification of susceptibility mutations that are relatively old and at high frequency. It is generally assumed-at least for modeling purposes-that selection against complex disease mutations is so weak that it can be ignored. In this article, I propose an explicit model for the evolution of complex disease loci, incorporating mutation, random genetic drift, and the possibility of purifying selection against susceptibility mutations. I show that, for the most plausible range of mutation rates, neutral susceptibility alleles are unlikely to be at intermediate frequencies and contribute little to the overall genetic variance for the disease. Instead, it seems likely that the bulk of genetic variance underlying diseases is due to loci where susceptibility mutations are mildly deleterious and where there is a high overall mutation rate to the susceptible class. At such loci, the total frequency of susceptibility mutations may be quite high, but there is likely to be extensive allelic heterogeneity at many of these loci. I discuss some practical implications of these results for gene mapping efforts.

摘要

对于人类复杂疾病背后的遗传变异本质,我们所知甚少。一种流行观点认为,图谱绘制工作应聚焦于识别相对古老且高频的易感性突变。通常假定——至少出于建模目的——针对复杂疾病突变的选择作用非常微弱,可以忽略不计。在本文中,我提出了一个关于复杂疾病位点进化的明确模型,该模型纳入了突变、随机遗传漂变以及针对易感性突变进行纯化选择的可能性。我表明,对于最合理的突变率范围,中性易感性等位基因不太可能处于中等频率,并且对疾病的总体遗传方差贡献不大。相反,疾病背后的大部分遗传方差似乎源于这样的位点,即易感性突变具有轻微的有害性,并且对易感类别存在较高的总体突变率。在这些位点,易感性突变的总频率可能相当高,但在许多此类位点可能存在广泛的等位基因异质性。我讨论了这些结果对基因图谱绘制工作的一些实际影响。

相似文献

1
Are rare variants responsible for susceptibility to complex diseases?
Am J Hum Genet. 2001 Jul;69(1):124-37. doi: 10.1086/321272. Epub 2001 Jun 12.
2
Optimal ascertainment strategies to detect linkage to common disease alleles.
Am J Hum Genet. 1999 Apr;64(4):1243-8. doi: 10.1086/302336.
3
Complex genetic diseases: controversy over the Croesus code.
Genome Biol. 2001;2(8):COMMENT2007. doi: 10.1186/gb-2001-2-8-comment2007. Epub 2001 Aug 1.
4
The allelic spectra of common diseases may resemble the allelic spectrum of the full genome.
Med Hypotheses. 2004;63(4):748-51. doi: 10.1016/j.mehy.2003.12.057.
5
The common variants/multiple disease hypothesis of common complex genetic disorders.
Med Hypotheses. 2004;62(2):309-17. doi: 10.1016/S0306-9877(03)00332-3.
7
Most rare missense alleles are deleterious in humans: implications for complex disease and association studies.
Am J Hum Genet. 2007 Apr;80(4):727-39. doi: 10.1086/513473. Epub 2007 Mar 8.
8
Linkage analysis in the presence of errors III: marker loci and their map as nuisance parameters.
Am J Hum Genet. 2000 Apr;66(4):1298-309. doi: 10.1086/302846. Epub 2000 Mar 23.
9
Genetic Analysis Workshop II: segregation and linkage analysis.
Genet Epidemiol. 1984;1(2):201-5. doi: 10.1002/gepi.1370010215.
10
The trimmed-haplotype test for linkage disequilibrium.
Am J Hum Genet. 2000 Mar;66(3):1062-75. doi: 10.1086/302796.

引用本文的文献

1
Winner's curse in rare variant analysis: effect size estimation bias depends on effect direction and the association method used.
Front Genet. 2025 Aug 8;16:1416673. doi: 10.3389/fgene.2025.1416673. eCollection 2025.
2
Principled measures and estimates of trait polygenicity.
bioRxiv. 2025 Jul 15:2025.07.10.664154. doi: 10.1101/2025.07.10.664154.
5
The Abundance of Harmful Rare Homozygous Variants in Children of Consanguineous Parents.
Biology (Basel). 2025 Mar 19;14(3):310. doi: 10.3390/biology14030310.
6
Germline predisposition in multiple myeloma.
iScience. 2024 Dec 17;28(1):111620. doi: 10.1016/j.isci.2024.111620. eCollection 2025 Jan 17.
7
Characterizing selection on complex traits through conditional frequency spectra.
Genetics. 2025 Apr 17;229(4). doi: 10.1093/genetics/iyae210.
9
Too big to purge: persistence of deleterious Mutations in Island populations of the European Barn Owl (Tyto alba).
Heredity (Edinb). 2024 Dec;133(6):437-449. doi: 10.1038/s41437-024-00728-8. Epub 2024 Oct 13.
10
Conditional frequency spectra as a tool for studying selection on complex traits in biobanks.
bioRxiv. 2024 Jun 17:2024.06.15.599126. doi: 10.1101/2024.06.15.599126.

本文引用的文献

1
Patterns of genetic variation in Mendelian and complex traits.
Annu Rev Genomics Hum Genet. 2000;1:387-407. doi: 10.1146/annurev.genom.1.1.387.
2
Perfect simulation from population genetic models with selection.
Theor Popul Biol. 2001 Jun;59(4):263-79. doi: 10.1006/tpbi.2001.1514.
3
A test for epistasis among induced mutations in Caenorhabditis elegans.
Genetics. 2000 Dec;156(4):1635-47. doi: 10.1093/genetics/156.4.1635.
4
Estimate of the mutation rate per nucleotide in humans.
Genetics. 2000 Sep;156(1):297-304. doi: 10.1093/genetics/156.1.297.
5
When did the human population size start increasing?
Genetics. 2000 Aug;155(4):1865-74. doi: 10.1093/genetics/155.4.1865.
7
Searching for genetic determinants in the new millennium.
Nature. 2000 Jun 15;405(6788):847-56. doi: 10.1038/35015718.
8
Adjusting the focus on human variation.
Trends Genet. 2000 Jul;16(7):296-302. doi: 10.1016/s0168-9525(00)02030-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验